
Gradient Method for Continuous Influence Maximization with
Budget-Saving Considerations

Wei Chen
Microsoft Research

weic@microsoft.com

Weizhong Zhang
IIIS, Tsinghua University

zwz15@mails.tsinghua.edu.cn

Haoyu Zhao
IIIS, Tsinghua University

zhaohy16@mails.tsinghua.edu.cn

Abstract
Continuous influence maximization (CIM) generalizes the original influence maximization by incorpo-

rating general marketing strategies: a marketing strategy mix is a vector x = (x1, . . . , xd) such that for
each node v in a social network, v could be activated as a seed of diffusion with probability hv(x), where
hv is a strategy activation function satisfying DR-submodularity. CIM is the task of selecting a strategy
mix x with constraint

∑
i
xi ≤ k where k is a budget constraint, such that the total number of activated

nodes after the diffusion process, called influence spread and denoted as g(x), is maximized. In this
paper, we extend CIM to consider budget saving, that is, each strategy mix x has a cost c(x) where c is a
convex cost function, and we want to maximize the balanced sum g(x) + λ(k− c(x)) where λ is a balance
parameter, subject to the constraint of c(x) ≤ k. We denote this problem as CIM-BS. The objective
function of CIM-BS is neither monotone, nor DR-submodular or concave, and thus neither the greedy
algorithm nor the standard result on gradient method could be directly applied. Our key innovation is
the combination of the gradient method with reverse influence sampling to design algorithms that solve
CIM-BS: For the general case, we give an algorithm that achieves

(
1
2 − ε

)
-approximation, and for the case

of independent strategy activations, we present an algorithm that achieves
(
1− 1

e
− ε
)
approximation.

1 Introduction
Influence maximization is the task of selecting a small number of seed nodes in a social network such that the
influence spread from the seeds when following an influence diffusion model is maximized. It models the viral
marketing scenario and has been extensively studied (cf. [12, 5, 13]). Continuous influence maximization
(CIM) generalizes the original influence maximization by incorporating general marketing strategies: a
marketing strategy mix is a vector x = (x1, . . . , xd) such that for each node v in a social network, v could be
activated as a seed of diffusion with probability hv(x), where hv is a strategy activation function satisfying
monotonicity and DR-submodularity. CIM is the task of selecting a strategy mix x with constraint

∑
i xi ≤ k

where k is a budget constraint, such that the total number of activated nodes after the diffusion process,
called influence spread and denoted as g(x), is maximized. CIM is proposed in [12], and recently followed up
by a few studies [27, 7].

In this paper, we extend CIM to consider budget saving: each strategy mix x has a cost c(x) where c is a
convex cost function, and we want to maximize the balanced sum g(x) + λ(k − c(x)) where λ is a balance
parameter, subject to the constraint of c(x) ≤ k. We denote this problem as CIM-BS. The objective reflects
the realistic consideration of balancing between increasing influence spread and saving marketing budget.
In general we have g(x) monotone (increasing) and DR-submodular (diminishing return property formally
defined in Section 2), but λ(k − c(x)) is concave and likely to be monotonically decreasing, and thus the
objective function g(x) + λ(k − c(x)) is neither monotone, nor DR-submodular or concave, and thus neither

1

ar
X

iv
:1

91
1.

09
10

0v
1

 [
m

at
h.

O
C

]
 2

1
N

ov
 2

01
9

the greedy algorithm nor the standard result on gradient method could be directly applied for a theoretical
guarantee.

In this paper, we apply the gradient method [17, 20] to solve CIM-BS with theoretical approximation
guarantees. This is the only case we know of that the gradient method is applied to influence maximization
with a theoretical guarantee while the greedy method cannot. The gradient method may be applied to the
original objective function g(x) + λ(k − c(x)), but g(x) is a complicated combinatorial function and its exact
gradient is infeasible to compute. We could use stochastic gradient instead, but it results in large variance and
very slow convergence. Instead, we integrate the gradient method with the reverse influence sampling (RIS)
approach [2, 24, 23], which is the main technical innovation in our paper. RIS is proposed for improving the
efficiency of the influence maximization task, but when integrating with the gradient method, it brings two
additional benefits: (a) it allows the efficient computation of the exact gradient of an estimator function of
g(x), which avoids slow convergence caused by the large variance in the stochastic gradient, and (b) for a
class of independent strategy activation functions hv where each strategy dimension independently attempts
to activate node v, the new objective function is in the form of coverage functions [11], which allows a tight
concave upper bound function and leads to a better approximation ratio.

For the general case, we apply the proximal gradient method originally designed for concave functions to
work with RIS and achieve an approximation of

(1
2 − ε

)
(Theorem 3). This requires an adaptation of the

proximal gradient method for the functions of the form f1(x) + f2(x) where f1 is non-negative, monotone
and DR-submodular and f2 is non-negative and concave, and the result of this adaption (Theorem 2) may be
of independent interest. For the independent strategy activation case, we apply the projected subgradient
method on a tight concave upper bound of the objective function and achieve a

(
1− 1

e − ε
)
approximation

(Theorem 4). We test our algorithms on a real-world dataset and validate its effectiveness comparing with
other algorithms.

In summary, our contributions include: (a) we propose the study of CIM-BS problem to balance influence
spread with budget saving; and (b) we integrate the gradient method with reverse influence sampling and
provide two algorithms with theoretical approximation guarantees, on the objective function that is neither
monotone, nor DR-submodular or concave. Our study is one of the first studies that introduce the gradient
method to influence maximization, and hopefully it will enrich the scope of the influence maximization
research.

For clarity, the detailed proofs and full experiment results are moved to the appendix.
Related works. Influence maximization was first proposed by Kempe et al. [12] as a discrete optimization
problem, and has been extensively studied since (cf. [5, 13]). CIM is also proposed in [12]. Yang et al. [27]
propose heuristic algorithms to solve CIM more efficiently, while Wu et al. [7] consider discrete version of CIM
and apply RIS to solve it efficiently. Profit maximization in [14, 21] introduces linear cost with no budget
constraint to influence maximization. Our CIM-BS problem is new and more general than both CIM and
profit maximization studied before. The RIS approach is originally proposed in [2], and is further improved
in [24, 23, 18].

Recently, a number of studies have applied gradient methods to DR-submodular maximization: Bian et
al. [1] apply the Frank-Wolfe algorithm to achieve 1− 1/e approximation for down-closed sets; Hassani et
al. [9] apply stochastic projected gradient descent to achieve 1/2 approximation; Karimi et al. [10] achieve
1− 1/e approximation for coverage functions, which we adopt for the independent strategy activation case;
Mokhtari et al. [16] apply more complicated conditional gradient method to achieve 1− 1/e approximation.
Our study is not a simple adoption of such methods to CIM-BS, because our objective function is not
DR-submodular, and gradient computation cannot be treated as an oracle —- we have to provide exact
gradient computation and an end-to-end integration with the RIS approach.

2 Preliminary and Model
In this paper, we focus on the triggering model for influence maximization problem. We use a directed graph
G = (V,E) to represent a social network, where V is the set of nodes representing individuals, and E is
the set of directed edges with edge (u, v) representing that u could directly influence v. Let n = |V | and

2

m = |E|. In the diffusion process, each node is either active or inactive, and a node will stay active if it is
activated. In the triggering model, every node v ∈ V has a distribution Dv on the subsets of v’s in-neighbors
N−(v) = {u|(u, v) ∈ E}. Before the diffusion starts, each node v ∈ V samples a triggering set Tv ⊆ N−(v)
from the distribution Dv, denoted Tv ∼ Dv. At time t = 0, the nodes in a pre-determined seed set S are
activated. For any time t = 1, 2, . . ., the node v is activated if at least one of nodes in its triggering set Tv is
activated at time t− 1. The whole propagation stops when no new node is activated in a step. An important
quantity is the influence spread of the seed set S, denoted as σ(S), which is defined as the expected number
of the final activated nodes with seed set S. The classical influence maximization problem is to maximize
σ(S) such that |S| ≤ k for some given budget k.

A generalization of the classical influence maximization problem is the continuous influence maximization
(CIM) problem with general marketing strategies [12]. A mix of marketing strategies is represented by a
d-dimensional vector x = (x1, x2, . . . , xd) ∈ Rd+, where R+ is the set of non-negative real numbers. In the
general case, we consider strategy mix x in a general convex set D ⊆ Rd+, but most commonly we consider
D = Rd+ or D has an upper bound in each dimension, e.g. D = [0, 1]d. Given the strategy x, each node
v ∈ V is independently activated as a seed with probability hv(x), where hv : Rd+ → [0, 1] is referred to as a
strategy activation function. Once a set of seeds S is activated by a marketing strategy mix x, the influence
propagates from seeds in S following the triggering model. Then we define the influence spread of strategy
mix x, g(x), as the expected number of nodes activated by x, and formally,

g(x) = ES [σ(S)]

=
∑
S⊆V

σ(S) ·
∏
u∈S

hu(x) ·
∏
v/∈S

(1− hv(x)). (1)

The above formula means that we enumerate through all possible seed sets S, and due to independent seed
activation by x the probability of S being the seed set is

∏
u∈S hu(x) ·

∏
v/∈S(1− hv(x)) and its influence

spread is σ(S).
In many situations, each strategy dimension in x activates each node independently. That is, for each

node v and each strategy j ∈ [d], there is a function qv,j such that strategy j with amount xj activates node
v with probability qv,j(xj). Then we have hv(x) = 1−

∏
j∈[d](1− qv,j(xj)). We call this case independent

strategy activation. Independent strategy activation models many scenarios such as personalized marketing
and event marketing [7].

In this paper, we focus on an extension of the continuous influence maximization problem — continuous
influence maximization with budget saving (CIM-BS). We have a total budge k, and for every strategy mix x,
there is a cost c(x). We do not want the cost to exceed the budget, and we want to maximize the budget
balanced influence spread: a combination of the expected influence spread and the remaining budget. More
formally, we have the following definition.

Definition 1 (Continuous Influence Maximization with Budget Saving). The continuous influence maximiza-
tion with budget saving (CIM-BS) is the problem of given (a) a social network G = (V,E) and the triggering
model {Dv}v∈V on G, (b) strategy activation functions {hv}v∈V , (c) cost function c, total budget k, and a
balance parameter λ ≥ 0, finding a strategy mix x∗ ∈ Rd+ to maximize its balanced sum of influence spread
and budget savings, i.e., find x∗ such that x∗ ∈ argmaxx∈D,c(x)≤k (g(x) + λ(k − c(x))).

Note that when λ = 0 and c(x) =
∑
i∈[d] xi, the CIM-BS problem falls back to the CIM problem defined

in [12], and also appears in [27, 7]. When c(x) is a linear function and the budget constraint c(x) ≤ k is
dropped, the problem resembles the profit maximization studied in [14, 21]. However, the general version of
the problem as defined here with λ > 0, a general cost function c(x) and constraint c(x) ≤ k together is new.
Henceforth, let s(x) = λ(k − c(x)). Intuitively, s(x) is the budget-saving part of the objective. The overall
objective of g(x) + s(x) is trying to find the balance between maximizing influence and saving budget. We
call g(x) + s(x) the budget-balanced influence spread. For convenience, we denote P = {x | x ∈ D, c(x) ≤ k}.

We say that a vector function f : D → R is DR-submodular if for any x,y ∈ D with x ≤ y (coordinate-
wise), for any unit vector ei with the i-th dimension 1 and all other dimensions 0, and for any δ > 0, we have

3

f(x + δ · ei)− b(x) ≥ f(y + δ · ei)− f(y). DR-submodularity characterizes the diminishing marginal return
on function f as vector x increases, hence the name. We also say that f is monotone if for any x,y ∈ D with
x ≤ y, f(x) ≤ f(y); f is convex if for any x,y ∈ D, any λ ∈ [0, 1], f(λx + (1− λ)y) ≤ λf(x) + (1− λ)f(y);
f is L-Lipschitz if for any x,y ∈ D, |f(x) − f(y)| ≤ L · ||x − y||2, where || · ||2 is the vector 2-norm; f is
β-smooth if it has gradients everywhere and for any x,y ∈ D, ||∇f(x)−∇f(y)||2 ≤ β||x− y||2. Note that
when the gradients exist, the L-Lipschitz condition is equivalent to ||∇f(x)||2 ≤ L for all x ∈ D.

In this paper, we assume that the strategy activation function hv is monotone and DR-submodular,
which implies that the influence spread function g is also monotone and DR-submodular, same as assumed
in [12, 7]. It is reasonable in that, with more marketing effort, the probability of seed activation would
increase (monotonicity) but the marginal effect may be decreasing. For the case of independent strategy
activation (hv(x) = 1−

∏
j∈[d](1− qv,j(xj))), we assume qv,j is non-decreasing and concave, which implies

that hv is monotone and DR-submodular [7]. In term of the cost function c, we assume that c is convex
and Lc-Lipschitz. The most common function is the simple summation (or 1-norm of x): c(x) =

∑
i∈[d] xi,

but more general convex functions are also common in the economics literature (e.g. [15]), for example
c(x) = ||x||2.

An important remark is now in order. When hv’s are monotone and DR-submodular and c is convex, g is
monotone and DR-submodular and s is concave, and as a result g + s may be neither monotone nor DR-
submodular. This means the greedy hill-climbing algorithm of [12, 7] no longer has theoretical approximation
guarantee for the CIM-BS problem. This motivates us to apply the gradient method to solve CIM-BS.

3 Gradient Method with Reverse Influence Sampling
Gradient method has been applied to many continuous optimization problems. For our CIM-BS problem, a
natural option is to apply the gradient method directly on the objective function g+ s. However, the influence
spread function g is a complicated combinatorial function, such that its gradient ∇g is too complex to
compute in practice. We could apply stochastic gradient on g (see Appendix D) but it has very large variance
due to the significant amount of randomness from both strategies activating seeds and influence propagation
from seeds, which leads to very slow convergence of the method. Instead, in this section, we propose a novel
integration of the gradient method with the reverse influence sampling (RIS) approach [2] for CIM-BS. The
key insight is that RIS allows the efficient computation of the exact gradient of an alternative objective
function ĝR + s while maintaining an approximation guarantee of 1/2 − ε. Moreover, when independent
strategy activation is satisfied by the model, the alternative objective enables a tight concave upper bound,
which leads to a 1− 1/e− ε approximation.

In Section 3.1, we first review existing results on RIS with the continuous domain. Then in Sections 3.2
and 3.3, we present the gradient method, its integration with RIS, and its theoretical analysis, which are our
main technical contribution.

3.1 Properties of the Reverse Reachable Sets
The central concept in the RIS approach is the reverse reachable set, as defined below.

Definition 2 (Reverse Reachable Set). Under the triggering model, a reverse reachable (RR) set with a
root node v, denoted Rv, is the random set of nodes that v reaches in one reverse propagation: sample all
triggering sets Tu, u ∈ V , such that edges {(w, u)|u ∈ V,w ∈ Tu} together with nodes V form a live-edge graph,
and Rv is the set of nodes that can reach v (or v can reach reversely) in this live-edge graph. An RR set R
without specifying a root is one with root v selected uniformly at random from V .

An RR set Rv includes nodes that would activate v in one sample propagation. Then, the key insight is
that for a collection of RR sets, if some node u appears in many of these RR sets, it means u is likely to
activate many nodes, and thus has high influence. Technically, RR sets connect with the influence spread
of a seed set S with the following equation [2, 23]: σ(S) = ER[Pr{S ∩ R 6= ∅}]. For CIM-BS, we have the
following connection as given in [7]:

4

Algorithm 1 Grad-RIS: Gradient-RIS Meta-Algorithm for CIM-BS.
Input: Directed graph G, triggering model {Dv}v∈V , domain P, strategy activation functions {hv}v∈V ,

cost function c, budget k, balance parameter λ, Lipschitz constants L1, L2 for the functions g + s and
ĝR+ s, approximation parameter ε, confidence parameter `, gradient algorithm A with the approximation
guarantee α

Output: A strategy mix x
1: R,LB ← Sampling(all parameters received)
2: x← A(R, ĝR + s, εLB) /* ĝR defined in Eq. (2), s(x) = λ(k − c(x)) */
3: return x

Lemma 1 ([7]). For any strategy x ∈ P, we have g(x) = n · ER
[
1−

∏
u∈R(1− hu(x))

]
.

Intuitively, the above lemma means that a node u ∈ R would activate R’s root if u itself is activated,
which happens with probability hu(x), and thus strategy mix successfully activate R’s root with probability
1 −

∏
u∈R(1 − hu(x)). We can generate θ independent RR-sets R = {R1, . . . , Rθ}, and take the average

among them as defined below:

ĝR(x) = n

θ

∑
R∈R

(
1−

∏
v∈R

(1− hv(x))
)
. (2)

We can see that ĝR(x) is an unbiased estimator of g(x). If θ is large enough, then ĝR(x) should be close to
g(x) at every x ∈ P. We also have the following lemma from [7].

Lemma 2 ([7]). If hv is monotone and DR-submodular for all v ∈ V , then g and ĝR are also monotone and
DR-submodular.

3.2 Algorithmic Framework Integrating Gradient Method with RIS
We first introduce the general algorithmic framework that integrates any gradient algorithm with the RIS
approach. We assume a generic gradient algorithm A that takes a set of RR sets R = {R1, . . . , Rθ},
an objective function ĝR + s, and an additive error ε as input, and return a solution x̂ that guarantees
(ĝR + s)(x̂) ≥ α ·maxy∈P(ĝR + s)(y) − ε, in time T = poly(1

ε), where α is some constant approximation
ratio. We call such an A an (α, ε)-approximate gradient algorithm.

Algorithm 1 gives the meta-algorithm. It first calls the Sampling procedure to sample enough RR sets R,
together with an estimated lower bound LB of the optimal solution. Then it calls the gradient algorithm A
with R, using ĝR + s as the objective function and εLB as the additive error.

The Sampling procedure is to sample enough RR sets for the theoretical guarantee. We adapt the sampling
procedure of the IMM algorithm [23], as shown in Algorithm 2. We use the IMM sampling procedure mainly
because of its clarity in analysis and theoretical guarantee, while other sampling procedures (e.g. [18]) could
be adapted too. The main structure of the sampling procedure is the same as in IMM, where we repeatedly
halving the guess xi of the lower bound LB of the optimal budget-balanced influence spread to find a good
lower bound estimate, and then use LB to estimate the final number of RR sets needed and regenerate these
RR sets (the regeneration is the workaround 1 proposed in [4] to fix a bug in the original IMM). There are
two important differences worth to mention. First, in line 8, we call the gradient algorithm A to find an
approximate solution yi, which replaces the original greedy algorithm in IMM. Second, and more importantly,
the original IMM algorithm works on a finite solution space — at most

(
n
k

)
feasible seed sets of size k, and(

n
k

)
is used to bound the number of RR sets needed. However, in CIM-BS, we are working on an infinite

solution space, and thus we cannot directly have such a bound. To tackle this problem, we utilize the concept
of ε-net and covering number to turn the infinite solution space into a finite space:

Definition 3 (ε-Net and Covering Number). A finite set N is called an ε-net for P if for every x ∈ P, there
exists π(x) ∈ N such that ||x− π(x)||2 ≤ ε. The smallest cardinality of an ε-net for P is called the covering
number: N (P, ε) = inf{|N | : N is an ε-net of P}.

5

Algorithm 2 Sampling Procedure.
Input: Same as in Algorithm 1
Output: The RR-sets R and an estimated lower bound LB

1: LB ← 1,R0 ← φ, θ0 = 0, ε′ ←
√

2ε/3
2: for i = 1, 2, . . . , blog2(n+ λk)− 1c do
3: xi ← (n+ λk)/2i
4: θi ←

⌈
n
(
2 + 2

3ε
′) ·

5:
lnN (P, ε/3

L2
xi)+` lnn+ln 2+ln log2 (n+λk)

ε′2xi

⌉
6: Generate θi − θi−1 independent RR-sets R′
7: Ri ← R′ ∪Ri−1
8: yi ← A(Ri, ĝRi

+ s, εxi/3)
9: if (ĝRi + s)(yi) ≥ (1 + ε′ + ε/3) · xi then

10: LB ← (ĝRi
+s)(yi)

1+ε′+ε/3 ; θ ← θi
11: break
12: end if
13: end for
14: θ(1) = 8n·ln(4n`)

LB·(α−ε/3)2ε2/9

15: θ(2) =
2α′·n·ln

(
4n`N (P, ε/3

L1+L2
LB)
)

(ε/3− 1
4 (α−ε/3)2ε/3)2LB

16: θ̃ ← max{θ(1), θ(2)}.
17: Generate θ̃ independent RR-sets R1, . . . , Rθ̃, R ← {R1, . . . , Rθ̃}
18: return (R,LB)

As a concrete example, suppose we have 1-norm or 2-norm cost function c(x) = ||x||1or ||x||2. With
budget k, we know that P is bounded by the ball B1(k) or B2(k) with radius k. Then, As shown in [25], the
covering number satisfies N (P, ε) ≤ N (B1(k), ε) ≤ N (B2(k), ε) ≤ (3k/ε)d.

Besides the ε-net, we also need to have the upper bounds L1 and L2 on the Lipschitz constants of functions
g + s and ĝR + s. We defer the discussion on L1 and L2 to the next subsection. Covering number and L1, L2
together are used to bound the number of RR sets needed, as used in lines 4 and 15 of Algorithm 2. We denote
Algorithms 1 and 2 together as Grad-RIS, and we show that Grad-RIS achieves the following approximation
guarantee:

Theorem 1. For any ε, `, α > 0, for any (α, ε/3)-approximate gradient algorithm A for ĝR + s, with
probability at least 1 − 1

n` , Grad-RIS outputs a solution x that is an (α − ε)-approximation of the optimal
solution OPTg+s of CIM-BS, i.e. (g + s)(x) ≥ (α− ε)OPTg+s.

The proof of the above theorem follows the proof structure of IMM [23], where the number of the RR sets
needed is carefully adapted to accommodate the covering number of the ε-net, and the Lipschitz constants of
the objective functions.

3.3 Gradient Algorithms
In this subsection, we will show two gradient algorithms that approximately maximize the function ĝR(x)+s(x).
They are the instantiations of the generic algorithm A in Section 3.2: the first one works on the general
model and uses proximal gradient to achieve (1

2 , ε)-approximation, while the second one works on the
special case of independent strategy activation and uses gradient on a concave upper bound to achieve
(1− 1

e , ε)-approximation.
General Case: ProxGrad-RIS. We first consider the general case where the strategy activation functions
hv’s are monotone, DR-submodular, Lh-Lipschitz and βh-smooth, and the cost function c is convex and

6

Lc-Lipschitz. In this case, we have that g and ĝR are monotone and DR-submodular (Lemma 2), and
budget-saving function s is concave. To solve this problem, we adapt the (stochastic) proximal gradient
algorithm [20, 19] to provide a 1

2 -approximate solution to the following problem: given a convex set P, a
β-smooth, non-negative, monotone, and DR-submodular function f1(x) on P and a non-negative and concave
function f2(x) on P , find a solution in P maximizing f1(x) + f2(x). The original proximal gradient is for the
case when both f1 and f2 are concave, and we adapt it to the case when f1 is monotone and DR-submodular
to provide an approximate solution. The reason we use proximal gradient is that our budget-saving function
s may not be smooth (e.g. when the cost function is the 2-norm function). We present the general solution
first, since it may be of independent interest. The following is the iteration procedure for the stochastic
proximal gradient algorithm.

x(t+1) = prox−ηtf2(x(t) + ηtv
(t)),

where E[v(t)] = ∇f1(x(t)),
proxφ(x) := argminy∈P(φ(y) + 1

2 ||x− y||22),
for any convex function φ,

(3)

where ηt ≤ 1
β is the step size and v(t) is the stochastic gradient at x(t) . We use ∆ to denote an upper bound

of the diameter of P, i.e. ∆ ≥ maxx,y∈P ||x− y||2. The following is the main result for the above stochastic
proximal gradient algorithm, with its proof adapted from the original proof.

Theorem 2. Suppose that P is a convex set, function f1(x) is β-smooth, non-negative, monotone, and DR-
submodular on P, f2(x) is non-negative and concave on P. Let x∗ be the point that maximizes f1(x) + f2(x).
Suppose that for some σ > 0, the stochastic gradient v(t) satisfies E||v(t) −∇f1(x(t))||22 ≤ σ2 for all t, then
for all T > 0, if we set ηt = η = 1/(β + σ

∆
√

2T), and iterate as shown in (3) starting from x(0) ∈ P, we have

E
[

max
t=0,1,2,...,T

(f1 + f2)(x(t))
]

≥ 1
2(f1 + f2)(x∗)− β∆2

4T −
σ∆√
2T

.

Note that if we use exact gradient instead of the stochastic gradient, we simply set σ = 0 in the above
theorem. To apply the proximal gradient algorithm and Theorem 2 to maximize ĝR+s, we compute the exact
gradient of ĝR and also derive the Lipschitz and smoothness constants, as shown below. For RR set sequence
R = {R1, . . . , Rθ}, let ν(1)(R) =

∑
R∈R |R|/θ be the average RR set size in R, ν(2)(R) =

∑
R∈R |R|2/θ be

the average squared size in R, and ν(3)(R) =
∑
R∈R |R|3/θ be the average cubed size.

Lemma 3. If functions hv(x)’s are Lh-Lipschitz, then function ĝR(x) is (ν(1)(R)nLh)-Lipschitz, and
function g(x) is (n2Lh)-Lipschitz. If functions hv(x)’s are βh-smooth, then function ĝR(x) is (ν(1)(R)nβh +
ν(2)(R)nL2

h)-smooth. The gradient of function ĝR(x) is

∇ĝR(x) = n

θ

∑
R∈R,v′∈R

∇hv′(x)
∏

v∈R,v 6=v′
(1− hv(x)). (4)

With Lemma 3 and Theorem 2, we can conclude the gradient algorithm A working with Grad-RIS with
the following settings: (a) we use the proximal gradient iteration given in Eq. (3), with stochastic gradient
v(t) replaced with the exact gradient ∇ĝR(x(t)) as given in Eq. (4); (b) we set step size ηt = 1/(ν(1)(R)nβh +
ν(2)(R)nL2

h) when calling the algorithm with R; (c) we set number of steps T = 3(ν(1)(R)nβh+ν(2)(R)nL2
h) ·

∆2/4ε; (d) we use L1 = L2 = n2Lh + λLc (since n ≥ ν(1)(R)) as parameters in Grad-RIS. We refer to the full
algorithm with the above setting as ProxGrad-RIS. The following theorem summarizes the approximation
guarantee of ProxGrad-RIS.

Theorem 3. For any ε, ` > 0, with probability at least 1− 1
n` , ProxGrad-RIS outputs a solution x that is a

(1
2 − ε)-approximation of the optimal solution OPTg+s of CIM-BS, i.e. (g + s)(x) ≥ (1

2 − ε)OPTg+s.

7

We remark that the actual computation of the proximal step prox−ηtf2(·) in Eq.(3) depends on domain D
and cost function c. When D = Rd+ and c is 1-norm or 2-norm function, we can derive efficient algorithm for
the proximal step, as summarized below.

Lemma 4. When c(x) = ||x||1 and D = Rd+, the proximal step can be done in time O(d log d). When
c(x) = ||x||2 and D = Rd+, the proximal step can be done in O(d).

Independent Strategy Activation Case: UpperGrad-RIS. Next, we introduce an
(
1− 1

e

)
-approximation

for maximizing ĝR + s under the case of independent strategy activation. Recall that in the independent
strategy activation case, each function hv(x) = 1 −

∏
j∈[d](1 − qv,j(xj)), where qv,j(xj) is monotone and

concave in xj . In this case, we can write ĝ(x) into the following form.

ĝR(x) = n

θ

∑
R∈R

(
1−

∏
v∈R

(1− hv(x))
)

=n

θ

∑
R∈R

1−
∏
v∈R

(
∏
j∈[d]

(1− qv,j(x))

 .

The above form makes ĝR(x) belong to coverage functions, which has the following concave upper and lower
bounds ([10]):

Proposition 1 ([10]). For any x ∈ [0, 1]l, let α(x) = 1 −
∏l
i=1(1 − xi) and β(x) = min{1,

∑l
i=1 xi}, we

have (1− 1/e)β(x) ≤ α(x) ≤ β(x).

By Proposition 1, we can optimize ḡR + s where ḡR(x) is the upper bound of ĝR(x) defined as:

ḡR(x) := n

θ

∑
R∈R

min{1,
∑

j∈[d],v∈R

qv,j(x)}. (5)

Since the function gR(x) is non-smooth, we use the projected subgradient method to maximize the
function ḡR + s [17], as summarized by the following lemma.

Lemma 5. In the case of independent strategy activation, suppose that ḡR + s is Lḡ+s-Lipschitz. If we use
projected subgradient descent to optimize the function (ḡR+ s)(x) with step size ηt = ∆

Lḡ+s

√
t
and let y denote

the output where (ḡR+ s)(y) ≥ maxx∈P(ḡR+ s)(x)− ε. Then (ĝR+ s)(y) ≥
(
1− 1

e

)
maxx∈P(ĝR+ s)(x)− ε,

and y can be solved in (∆Lḡ+s)2

ε2 iterations.

The following lemma presents the Lipschitz constants and subgradients needed in Lemma 5.

Lemma 6. Suppose that functions qv,j(xj)’s are Lq-Lipschitz, then function g(x) is n2
√
dLq-Lipschitz, and

functions ĝR(x) and ḡR(x) are ν(1)(R)n
√
dLq-Lipschitz. The subgradient of the function ḡR(x) is

n

θ

∑
R∈R


0, if

∑
j∈[d],v∈R

qv,j(xj) ≥ 1,

∑
v∈R,j∈[d]

∇qv,j(xj), if
∑

j∈[d],v∈R

qv,j(xj) < 1.
(6)

Combining Lemma 6 with Lemma 5, we can conclude our subgradient algorithm based on the upper
bound function ḡR + s: (a) we use the projected subgradient algorithm with the subgradient of ḡR given
in Eq.(6); (b) we set step size ηt = ∆/(ν(1)(R)n

√
dLq
√
t); (c) we use T = 9(∆ν(1)(R)n

√
dLq + λLc)2/ε2

iterations to get ε accuracy; and (d) we set L1 = L2 = n2
√
dLq + λLc in Grad-RIS. We refer to the full

algorithm with the above setting as UpperGrad-RIS. The following theorem summarizes the approximation
guarantee of UpperGrad-RIS.

8

Theorem 4. For any ε, ` > 0, with probability at least 1− 1
n` , UpperGrad-RIS outputs a solution x that is an

(1−1/e−ε)-approximation of the optimal solution OPTg+s of CIM-BS, i.e. (g+s)(x) ≥ (1−1/e−ε)OPTg+s.

Total Time Complexity. For the time complexity of ProxGrad-RIS and UpperGrad-RIS, we make the
following reasonable assumptions: (1) the time for sampling a trigger set Tv ∼ Dv is proportional to the
in-degree of v; (2) the optimal influence spread maxx∈P g(x) among strategy mixes is at least the optimal
single node influence spread maxv∈V σ({v}); and (3) λk ≤ n, otherwise the budget saving is more important
than influencing the entire network, and CIM-BS problem no longer makes much sense. The following theorem
summarizes the time complexity result when D = Rd+ and c(x) = ||x||1 or c(x) = ||x||2. The more general
result is given in Appendix C. Notation Õ(·) ignores poly-logarithmic factors.

Theorem 5. Suppose that D = Rd+ and c(x) = ||x||1 or ||x||2, hv(x)’s are Lh-Lipschitz and βh-
smooth. If ∇hv(x) can be computed in time Th, the expected running time of ProxGrad-RIS is bounded
by Õ

(
βhn

2+L2
hn

3

ε · Th(m+n)·(d+`)
ε2

)
. Under independent strategy activation, if qv,j(xj)’s are Lq-Lipschitz

and the gradient and function value of qv,l(xj) can be computed in time Tq, the expected running time of
UpperGrad-RIS is bounded by Õ

(
n4dL2

q

ε2 · Tq(m+n)·(d+`)
ε2

)
.

From the time complexity result, we can see that the two gradient algorithms still have high-order
dependency on the graph size. This is mainly because we need the conservative bounds on the number
of gradient algorithm iterations for the theoretical guarantee (terms βhn

2+L2
hn

3

ε and n4dL2
q

ε2). In our actual
algorithms, we already use ν(1)(R) and ν(2)(R) instead of n and n2 in the upper bound of the gradient decent
steps for ĝR + s, so our actual performance would be reduced by corresponding factors. For details, please
see Appendix C.2 for the results and discussions on using the moments of RR set size in the time complexity
bounds.

4 Experiments
Experiment setup. We test on two network dataset. The first dataset is the DM network, which is
a network of data mining researchers extracted from the ArnetMiner archive (arnetminer.org), with 679
nodes and 3, 374 edges, and edge weights are learned from a topic affinity model and obtained from the
authors [22]. The second dataset is NetHEPT, a popular dataset used in many influence maximization studies
(e.g. [6, 26, 23]). It is an academic collaboration network from the “High Energy Physics Theory” section of
arXiv from 1991 to 2003, where nodes represent the authors and each edge represents one paper co-authored
by two nodes. After removing duplicated edges, we have 15, 233 nodes and 62, 774 directed edges. The
influence probabilities on edges are assigned according to the weighted cascade setting [12]: the influence
probability of edge (u, v) is 1/dv, where dv is the in-degree of v.

Besides our ProxGrad-RIS and UpperGrad-RIS algorithms, we test two more algorithms: (a) ProxGrad-Org:
stochastic proximal gradient algorithm on the original objective function, and the stochastic gradient
computation as well as step size and step count settings are given in Appendix D. By Theorem 2, ProxGrad-Org
would achieve 1/2 approximation in expectation. (b) Greedy-RIS: simply replace the gradient algorithm A in
Grad-RIS with the greedy algorithm for the objective ĝR(x) + s(x) on generated RR sets R, and the greedy
algorithm stops either when the budget is exhausted or the marginal gain is negative. This is similar to
the algorithm in [7], but since ĝR(x) + s(x) is neither monotone nor DR-submodular, Greedy-RIS has no
theoretical guarantee and it is only a heuristic algorithm for our tests. For the three gradient-based algorithms
ProxGrad-RIS, UpperGrad-RIS, and ProxGrad-Org, we further test their heuristic versions that may lead to
faster running time: instead of using a conservative number of iteration steps for theoretical guarantees,
we heuristically terminate the gradient iteration if the difference in the objective function values for two
consecutive iterations is within a small value of 0.3 (we will justify the choice of this parameter in our tests).
We put suffix HEU for the three versions of the heuristic gradient termination algorithms.

For parameter settings, we set ε = 0.3 and ` = 1 for all algorithms. For Greedy-RIS, we set the greedy step
size to be 0.1 on each dimension. For 1-norm cost function (c(x) = ||x||1), we test (a) vary k from 5 to 50 while

9

(a) c(x) = ||x||1, λ = 5 (b) c(x) = ||x||1, k = 50

(c) c(x) = ||x||2, λ = 50 (d) c(x) = ||x||2, k = 5

Figure 1: Budget balanced influence spread results for the personalized marketing scenario on the DM dataset.
The legends shown in (a) apply to all other figures.

keeping λ = 5, and (b) vary λ from 0 to 10 while keeping k = 50. For 2-norm cost function (c(x) = ||x||2),
we test (c) varying vary k from 1 to 10 while keeping λ = 50, and (d) vary λ from 0 to 100 while keeping
k = 5. The reason we use a smaller budget k for 2-norm cost function is because ||x||2 ≤ ||x||1/

√
d, and

thus we need a significantly small budget for 2-norm in order to have a similar feasible region. Parameter λ
is adjusted accordingly so that λ · k is at the same scale as the influence spread, otherwise either influence
spread or budget saving is dominant, and the problem is degenerated. For functions hv(x), we test two cases:
the personalized marketing case and the segment marketing case [27, 7]. In the personalized marketing case,
each node v receives a separate discount xv ∈ [0, 1]. This corresponds to the independent strategy activation
case with d = n, and qv,j(xj) > 0 only when j = v. We set qv,v(xv) = 2xv − x2

v as in [27, 7]. In the segment
marketing case, we have 10 strategies in total, i.e d = 10, each strategy targets to a disjoint segment of users,
and each user has exactly one corresponding strategy. Each user is randomly put into one of the 10 user
segments with equal probability, and if one segment in the end has less than 50 or larger than 80 users, we

10

(a) c(x) = ||x||1, λ = 5 (b) c(x) = ||x||1, k = 50

(c) c(x) = ||x||2, λ = 50 (d) c(x) = ||x||2, k = 5

Figure 2: Budget balanced influence spread results for the segment marketing scenario on the DM dataset.
The legends shown in (a) apply to all other figures.

regenerate the user segments, so that in the end all segments have sizes within 50 to 80.
The experiments are run on a Ubuntu 17.04 server machine with 2.9GHz and 128GB memory. The code

is written in C++ and compiled by g++.
Experimental results. We first show the results on the DM dataset. Figure 1 shows the influence
spread results of the personalized marketing scenario, and Figure 2 shows the influence results of the segment
marketing scenario, both on the DM dataset. Each data point on an influence spread curve is the average of
five solutions found by five runs of the same algorithm, and the influence spread of each solution is an average
of 1000 simulation runs. In all cases, UpperGrad-RIS/UpperGrad-RISHEU has the best performance, followed
by ProxGrad-RIS/ProxGrad-RISHEU, which coincides with our theoretical analysis that UpperGrad-RIS has a
better theoretical guarantee. Both algorithms outperform two baselines in most cases, especially when λ is
getting large. Large λ indicates that we need to pay more attention to budget saving, and thus the result
suggests that our algorithm handles much better in the balance between influence spread and budget saving.

11

Comparing the heuristic termination version of each gradient-based algorithm with their corresponding
theory-guided termination, the heuristic versions almost match the theoretical version in influences spread in
all cases, showing that the heuristic termination seems to perform well in practice.

Table 1: Running time results for the personalized marketing scenario on the DM dataset (in seconds).

c(x) = ||x||1, k = 50 and λ = 5 c(x) = ||x||2, k = 5 and λ = 50
ProxGrad-RIS 33.2 27.3
ProxGrad-RISHEU 6.5 5.5
UpperGrad-RIS 81.8 72.3
UpperGrad-RISHEU 13.2 13.9
Greedy-RIS 10.2 8.7
ProxGrad-Org 1043.9 1021.6
ProxGrad-OrgHEU 243.4 187.8

Table 2: Running time results for the segment marketing scenario on the DM dataset (in seconds).

c(x) = ||x||1, k = 50 and λ = 5 c(x) = ||x||2, k = 5 and λ = 50
ProxGrad-RIS 0.58 0.46
ProxGrad-RISHEU 0.12 0.11
UpperGrad-RIS 1.9 2.4
UpperGrad-RISHEU 0.32 0.77
Greedy-RIS 0.12 0.13
ProxGrad-Org 28.6 19.2
ProxGrad-OrgHEU 4.8 4.3

Table 1 shows the running time of the personalized marketing scenario, and Table 2 shows the running time
of the segment marketing scenario, Each running time number is the average of five runs. The result shows
that ProxGrad-RIS and UpperGrad-RIS are 9 to 49 times faster than ProxGrad-Org. This is mainly due to the
high variance in the stochastic gradient for the original objective function, as we discussed before. Moreover,
ProxGrad-RIS and UpperGrad-RIS is slower than Greedy-RIS. This is mainly because our conservative bounds
on the number of gradient iterations make ProxGrad-RIS and UpperGrad-RIS slow, while Greedy-RIS only use
the heuristic greedy approach with step size 0.1 without any theoretical guarantee. Indeed Greedy-RIS is
inferior to ProxGrad-RIS and UpperGrad-RIS in terms of the influence spread achieved.

The heuristic termination significantly improves the running time. Comparing against their respective
theory-guided termination counterparts, we can see that heuristic termination in general improves the running
time for 5 — 7 times. Comparing against the Greedy-RIS algorithm, we can see that ProxGrad-RISHEU is now
faster than Greedy-RIS and UpperGrad-RISHEU is close to Greedy-RIS in running time. Therefore, this means
that our gradient-based algorithms could achieve faster running time with heuristic termination while still
providing better influence spread quality than the greedy heuristic, and if we want a theoretical guarantee,
we could use more conservative theory-guided termination, which runs a few times slower but provides both
theoretical guarantee and best empirical performance on influence spread.

Next, we test on the larger dataset NetHEPT. On this larger dataset, the gradient algorithms with
theoretical guarantee is too slow to run, so we only run the heuristic versions of the algorithms and comparing
them with the heuristic greedy algorithm. Figure 3 show the result of the budget balanced influence spread
versus k and λ respectively, for the case of the personalized marketing scenario. We use basically the same
parameter settings as in the DM dataset, except that we try large λ values (e.g. λ = 10 instead of λ = 5 as in
the DM dataset when varying k), because NetHEPT dataset has larger influence spread, and we need a larger
value of λ to balance that. From the result, we can see that the UpperGrad-RISHEU and ProxGrad-RISHEU
still perform better than the greedy heuristic. Moreover, the advantage is larger when the balance parameter
λ is getting large, similar to the results we see on the DM dataset. Table 3 reports the running time of the
algorithms on the NetHEPT dataset. We see that UpperGrad-RISHEU and ProxGrad-RISHEU are a few times

12

(a) c(x) = ||x||1, λ = 10 (b) c(x) = ||x||1, k = 50

Figure 3: Budget balanced influence spread results for the personalized marketing scenario on the NetHEPT
dataset.

slower than the greedy heuristic.

Table 3: Running time results for the personalized marketing scenario on the NetHEPT dataset (in seconds).

c(x) = ||x||1, k = 50 and λ = 10
ProxGrad-RISHEU 964.1
UpperGrad-RISHEU 1522.7
Greedy-RIS 334.0

Besides looking at the budget balanced influence spread g(x) + s(x) as a whole, we would also like to
decompose this overall objective into the influence spread g(x) and budget saving s(x) and see how each of
them behaves, especially when λ changes. Figure 4 (a) shows this test result on the DM dataset with k = 50
and c(x) = ||x||1, focusing on the UpperGrad-RIS and Greedy-RIS algorithms. The result shows that when
λ increases, the influence spread objective g(x) in general decreases while the budget saving objective s(x)
increases, indicating that both algorithms lean towards budget saving when more weight is put on budget
saving. Comparing the two algorithms, we clearly see that UpperGrad-RIS put much more emphasis on budget
saving than Greedy-RIS, with budget saving objective s(x) more than doubled.

For the heuristic version of our gradient algorithms, we further verify the stopping criteria parameter 0.3
that we use. To do so, we vary this parameter from 0.1 to 1 and see the result comparing to the theory-guided
version of the algorithms. Figure 4 (b) shows this test result on the DM dataset with k = 50, λ = 5 and
c(x) = ||x||1. The result shows that in general before 0.3 or 0.4, the performance of our heuristic algorithms
match very closely with the theory-guided versions, but when the parameter increases to 0.5 or above, the
performance of the heuristic algorithms starts to drop significantly. Therefore, in our main experiments, we
set this parameter to 0.3.

Finally, we collect the statistics for the first three moments of the average RR set sizes, which are closely
related to the running time of the gradient-based algorithms, as discussed at the end of Section 3 and shown
in Theorems 8 and 9. In particular, by random sampling 10,000 RR sets and taking the average, we obtain
ν(1) = E[|R|] = 7.2, ν(2) = E[|R|2] = 62.9, ν(3) = E[|R|3] = 501.4. Following the remark after Theorems 8, we
can see that without using these moments in the time complexity bound, we would have relaxed the bound
for a large factor. In particular, according to the remark after Theorems 8, the relaxation factors for various

13

(a) Decomposition of the objective function (b) Stopping criteria parameter tuning

Figure 4: Decomposition of the objective function, and stopping criteria parameter tuning for the heuristic
version of algorithms, on the DM dataset. We use c(x) = ||x||1, k = 50, and for (b) λ = 5.

components of computations are: n/ν(1) = 94, n2/ν(2) = 7, 330, ν(1) · n/ν(2) = 78, and ν(1) · n2/ν(3) = 6, 620.
This suggests that using moments of mean RR set size would significantly reduce the time complexity bound.

5 Conclusion and Further Work
In this paper, we tackle the new problem of continuous influence maximization with budget saving (CIM-BS),
whose objective function is neither monotone, nor DR-submodular or concave. We use the gradient method
to solve CIM-BS, and provide innovative integration with the reverse influence sampling method to achieve
theoretical approximation guarantees. One important direction of future study is to make the gradient
method more scalable, which requires more detailed study of convergence behavior and properties of the
gradient method in the influence maximization domain. Another direction is to investigate if the gradient
method can be applied to other influence maximization settings such as competitive influence maximization.
Gradient method is a rich and powerful approach that has been already applied to many application domains,
and thus we hope our work could inspire more studies incorporating the gradient method into the influence
maximization research.

References
[1] Andrew An Bian, Baharan Mirzasoleiman, Joachim M. Buhmann, and Andreas Krause. Guaranteed

non-convex optimization: Submodular maximization over continuous domains. In AISTATS, 2017.

[2] Christian Borgs, Michael Brautbar, Jennifer Chayes, and Brendan Lucier. Maximizing social influence
in nearly optimal time. In SODA, 2014.

[3] Chandra Chekuri, Jan Vondrák, and Rico Zenklusen. Submodular function maximization via the
multilinear relaxation and contention resolution schemes. SIAM Journal on Computing, 43(6):1831–1879,
2014.

[4] Wei Chen. An issue in the martingale analysis of the influence maximization algorithm imm. In CSoNet,
2019.

14

[5] Wei Chen, Laks VS Lakshmanan, and Carlos Castillo. Information and Influence Propagation in Social
Networks. Morgan & Claypool Publishers, 2013.

[6] Wei Chen, Yajun Wang, and Siyu Yang. Efficient influence maximization in social networks. In KDD,
pages 199–208, 2009.

[7] Wei Chen, Ruihan Wu, and Zheng Yu. Scalable lattice influence maximization. Technical Report
arXiv:1802.04555v2, arXiv, 2019.

[8] Patrick L Combettes and Valérie R Wajs. Signal recovery by proximal forward-backward splitting.
Multiscale Modeling & Simulation, 4(4):1168–1200, 2005.

[9] S. Hamed Hassani, Mahdi Soltanolkotabi, and Amin Karbasi. Gradient methods for submodular
maximization. In NIPS, 2017.

[10] Mohammad Karimi, Mario Lucic, Hamed Hassani, and Andreas Krause. Stochastic submodular
maximization: The case of coverage functions. In NIPS, 2017.

[11] Mohammad Reza Karimi, Mario Lucic, S. Hamed Hassani, and Andreas Krause. Stochastic submodular
maximization: The case of coverage functions. In NIPS, pages 6856–6866, 2017.

[12] David Kempe, Jon M. Kleinberg, and Éva Tardos. Maximizing the spread of influence through a social
network. Theory of Computing, 11(4):105–147, 2015. First appeared in KDD’03.

[13] Yuchen Li, Ju Fan, Yanhao Wang, and Kian-Lee Tan. Influence maximization on social graphs: A survey.
IEEE Trans. Knowl. Data Eng., 30(10):1852–1872, 2018.

[14] Wei Lu and Laks V S Lakshmanan. Profit maximization over social networks. In ICDM, pages 479–488,
2012.

[15] N Gregory Mankiw. Principles of economics. Cengage Learning, 2014.

[16] Aryan Mokhtari, Hamed Hassani, and Amin Karbasi. Conditional gradient method for stochastic
submodular maximization: Closing the gap. In AISTATS, 2018.

[17] Yurii Nesterov. Introductory lectures on convex optimization: A basic course, volume 87. Springer
Science & Business Media, 2013.

[18] Hung T. Nguyen, My T. Thai, and Thang N. Dinh. Stop-and-stare: Optimal sampling algorithms for
viral marketing in billion-scale networks. In SIGMOD, pages 695–710, 2016.

[19] Atsushi Nitanda. Stochastic proximal gradient descent with acceleration techniques. In NIPS, 2014.

[20] Neal Parikh, Stephen Boyd, et al. Proximal algorithms. Foundations and Trends R© in Optimization,
1(3):127–239, 2014.

[21] J Tang, X Tang, and J Yuan. Profit maximization for viral marketing in online social networks. In
ICNP, 2016.

[22] Jie Tang, Jimeng Sun, Chi Wang, and Zi Yang. Social influence analysis in large-scale networks. In
KDD, 2009.

[23] Youze Tang, Yanchen Shi, and Xiaokui Xiao. Influence maximization in near-linear time: a martingale
approach. In SIGMOD, 2015.

[24] Youze Tang, Xiaokui Xiao, and Yanchen Shi. Influence maximization: near-optimal time complexity
meets practical efficiency. In SIGMOD, 2014.

[25] Ramon van Handel. Probability in high dimension. Technical report, Princeton University, 2014.

15

[26] Chi Wang, Wei Chen, and Yajun Wang. Scalable influence maximization for independent cascade model
in large-scale social networks. Data Mining and Knowledge Discovery, 25(3):545–576, 2012.

[27] Yu Yang, Xiangbo Mao, Jian Pei, and Xiaofei He. Continuous influence maximization: What discounts
should we offer to social network users? In SIGMOD, pages 727–741, 2016.

16

Appendix

A Proof of Theorem 1
In this section, we present the detailed proof of Theorem 1. The proof follows the structure of the proof of
IMM [23].

Our analysis is based on a version of Chernoff bound, which is shown as follow. For convenience, we
will use the notation OPTg to denote the maximum value of g and OPTg+s to denote the maximum value
of g + s in the set P, and we use x∗g to denote the solution when maximizing the function g in the set
P, i.e. g(x∗g) = OPTg. We will also use x∗g+s to denote the point maximizing g + s in the set P, i.e.
g(x∗g+s) = OPTg+s.

Proposition 2 (Chernoff Bound [23]). Let X1, X2, . . . , Xt be t independent random variable with support
[0, 1], and let E[Xi] = µ for all i ∈ [t]. Let Y =

∑t
i=1Xi, we have for any γ > 0,

Pr{Y − tµ ≥ γ · tµ} ≤ exp
(
− γ2

2 + 2
3γ
tµ

)
.

For any 0 < γ < 1, we have

Pr{Y − tµ < −γ · tµ} ≤ exp
(
−γ

2

2 tµ
)
.

Recall that we want to optimize the function (g + s)(x) in the set P, where h(x) ≥ 0 for all x ∈ P, and
g(x) is the influence of the network with strategy x and g(x), and we use

ĝR(x) = n

θ

∑
R∈R

(
1−

∏
v∈R

(1− hv(x))
)

to approximate g(x).
Then given the Chernoff bound, our proof comes as follow. We first fix the number of generated independent

RR-sets θ = |R| and we assume that we have an lower bound LB for the optimal value OPTg+s. We first
show that with the randomness of the generated RR-sets, with high probability, optimizing the function
(ĝR + s) will lead to a guaranteed approximation of the function (g + s). (Lemma 7,8,9) Then we show that
with high probability, the Sampling Procedure(Algorithm 2) will return a lower bound LB for the optimal
value OPTg+s.

Lemma 7. Given a constant 0 < α′ < 1. For any ε > 0, any 0 < α′ε1 < ε/3, and any δ1, δ2 > 0. If we have
an lower bound LB for the optimal value OPTg+s, let

θ(1) =
2n · ln

(
1
δ1

)
ε2

1 · LB
, θ(2)(N) =

2α′ · n · ln
(
N
δ2

)
(ε/3− α′ε1)2LB ,

where N is a variable. Recall that x∗g+s = argmaxx∈P(g(x) + s(x)), then for any fixed |R| = θ ≥ θ(1), we
have

Pr{ĝR(x∗g+s) + h(x∗g+s) < (1− ε1) ·OPTg+s} ≤ δ1.

For any fixed |R| = θ ≥ θ(2)(N) and any fixed possible solution x ∈ P that satisfies g(x) + h(x) <
(α′ − ε/3)OPTg+s − T where T ≥ 0 is a constant, we have

Pr {ĝR(x) + s(x) ≥ α′(1− ε1) ·OPTg+s − T} ≤
δ2
N
.

17

Proof. First recall that

ĝR(x) = n

θ

∑
R∈R

(
1−

∏
v∈R

(1− hv(x))
)
.

Let XRi (x) = 1 −
∏
v∈Ri

(1 − hv(x)) where R = {R1, R2, . . . , Rθ}, then XRi (x) ∈ [0, 1] and ĝR(x) =
n
θ

∑θ
i=1X

R
i (x). We also know that XRi (x) are independent. Then from the Chernoff bound(Proposition 2),

we have

Pr{ĝR(x∗g+s) + s(x∗g+s) < (1− ε1) ·OPTg+s}

= Pr
{
n

θ

θ∑
i=1

XRi (x∗) + s(x∗g+s) < (1− ε1) · (g(x∗g+s) + s(x∗g+s))
}

= Pr
{

θ∑
i=1

XRi (x∗g+s)−
θ

n
g(x∗g+s) < −ε1 ·

θ

n
OPTg+s

}

≤ exp

−
(
ε1 · OPTg+s

g(x∗g+s)

)2

2
θ

n
g(x∗g+s)


≤ exp

(
−ε

2
1
2
θ

n
OPTg+s

)

≤ exp

−ε2
1
2

2n · ln
(

1
δ1

)
nLB · ε2

1
OPTg+s

 ≤ δ1.
Let ε2 = ε− α′ε1. Let x ∈ P be a point such that g(x) + s(x) < (α′ − ε/3)OPTg+s − T , and we have

Pr {ĝR(x) + s(x) ≥ α′(1− ε1) ·OPTg+s − T}

= Pr
{
n

θ

θ∑
i=1

XRi (x) + s(x)− g(x)− s(x) ≥ α′(1− ε1) ·OPTg+s − g(x)− s(x)− T
}

≤Pr
{

θ∑
i=1

XRi (x)− θ

n
g(x) ≥ θ

n
(α′(1− ε1) ·OPTg+s − (α′ − ε/3)OPTg+s)

}

= Pr
{

θ∑
i=1

XRi (x)− θ

n
g(x) ≥ θ

n
(ε2OPTg+s)

}

= Pr
{

θ∑
i=1

XRi (x)− θ

n
g(x) ≥

(
ε2OPTg+s
g(x)

)
θ

n
g(x)

}

≤ exp

−
(
ε2OPTg+s

g(x)

)2

2 + 2
3
ε2OPTg+s

g(x)

θ

n
g(x)


≤ exp

(
−

ε2
2OPT2

g+s

2g(x) + 2
3ε2OPTg+s

θ

n

)

≤ exp
(
−

ε2
2OPT2

g+s

2(α′ − ε/3)OPTg+s + 2
3ε2OPTg+s

θ

n

)

≤ exp
(
− (ε/3− α′ε1)2OPTg+s

2α′
θ

n

)

18

≤ exp

− (ε/3− α′ε1)2OPTg+s
2α′

1
n
·

2α′ · n · ln
(
N
δ2

)
(ε/3− α′ε1)2LB

 ≤ δ2
N
.

Lemma 8. Given a constant 0 < α < 1, L1, L2. For any ε > 0, any ε2 > 0, 0 < ε3 < α, any 0 < ε1 <
(α− ε3)ε/3, and any δ1, δ2 > 0. Suppose that we have an lower bound LB for the optimal value OPTg+s, if

(a) Pr{ĝR(x∗g+s) + s(x∗g+s) < (1− ε1) ·OPTg+s} ≤ δ1;
(b) for any x ∈ P that satisfies g(x) + s(x) < (α− ε3 − ε/3)OPTg+s − L2ε2LB, we have

Pr {ĝR(x) + s(x) ≥ ((α− ε3)(1− ε1) ·OPTg+s − L2ε2LB} ≤
δ2

N (P, ε2LB) ;

(c) the algorithm A will output xout such that (ĝR + s)(xout) ≥ (α− ε3) ·maxx∈P(ĝR + s)(x);
(d) (g + s)(x) is L1-Lipschitz, and (ĝR + s)(x) is L2-Lipschitz;
then with probability at least 1− δ1 − δ2,

(g + s)(xout) ≥ (α− ε/3− ε3 − (L1 + L2)ε2)OPTg+s.

Proof. First we fix an ε2LB-net E for the set P with number of points N (P, ε2LB). Let π(x) : P → E
denote the mapping from P to the ε2LB-net E such that ||π(x)− x||2 ≤ ε2LB. From assumption (a), we
know that with probability at least 1− δ1, we have

(ĝR + s)(xout) ≥(α− ε3) max
x∈P

(ĝR + s)(x)

≥(α− ε3)(ĝR + s)(x∗g+s)
≥(α− ε3)(1− ε1) ·OPTg+s.

Since (ĝR + s)(x) is L2-Lipschitz, we have

(ĝR + s)(π(xout)) =(ĝR + s)(xout) + ((ĝR + s)(π(xout))− (ĝR + s)(xout))
≥(ĝR + s)(xout)− |(ĝR + s)(π(xout))− (ĝR + s)(xout)|
≥(α− ε3)(1− ε1) ·OPTg+s − L2ε2LB.

Then from (b) and the union bound, we know that with probability at least 1 − δ2, for every x ∈ E, if
g(x) + s(x) < (α− ε3 − ε/3)OPTg+s − L2ε2LB, then

ĝR(x) + s(x) < (α− ε3)(1− ε1) ·OPTg+s − L2ε2LB.

Then by the union bound, we know that with probability at least 1− δ1 − δ2,

(g + s)(π(xout)) ≥ (α− ε3 − ε/3)OPTg+s − L2ε2LB.

Since from (d), (g + s)(x) is L1-Lipschitz, then with probability at least 1− δ1 − δ2, we have

(g + s)(xout) ≥ (g + s)(π(xout))− L1ε2LB ≥ (α− ε3 − ε/3− (L1 + L2)ε2)OPTg+s.

Combining Lemma 7 and Lemma 8 together, we have the following lemma,

19

Lemma 9. If (g + s)(x) is L1-Lipschitz, and (ĝR + s)(x) is L2-Lipschitz. Suppose that we have an lower
bound LB for the optimal value OPTg+s, and an oracle A that can get an (α − ε/3)-approximation for
OPTg+s, where α− ε/3 > 0. Let

θ(1) =
8n · ln

(
4n`
)

LB · (α− ε/3)2ε2/9 , θ(2) =
2α′ · n · ln

(
4n`N (P, ε/3

L1+L2
LB)

)
(ε/3− 1

4 (α− ε/3)2ε/3)2LB
.

If |R| = θ ≥ max{θ(1), θ(2)}, and xout = A(ĝR + h, εLB), then with probability at least 1− 1
2n` ,

(g + s)(xout) ≥ (α− ε)OPTg+s.

Proof. The proof of this lemma is a direct combination of Lemma 7 and Lemma 8. We choose the parameters
δ1 = δ2 = 1

4n` in Lemma 7 and Lemma 8. We choose ε1 = 1
2 (α− ε/3), ε2 = ε/3

L1+L2
, ε3 = ε/3 in Lemma 8,

and α′ = α− ε/3 in Lemma 7.
Now since |R| = θ ≥ max{θ(1), θ(2)}, then the assumption of Lemma 7 is satisfied, and then the assumption

(a),(b) of Lemma 8 is satisfied.
Then based on our assumption on the oracle A, we know that

(ĝR + s)(xout) ≥ αmax
x∈P

(ĝR + s)(x)− ε/3 · LB ≥ (α− ε/3) max
x∈P

(ĝR + s)(x),

then the assumption (c) of Lemma 8 is satisfied.
We also assume that (g + s)(x) is L1-Lipschitz, and (ĝR + s)(x) is L2-Lipschitz, so assumption (d) is also

satisfied. Then we know that with probability at least 1− 1
2n` ,

(g + s)(xout) ≥ (α− ε)OPTg+s.

Now we show that with high probability, the sampling procedure will return a lower bound LB ≤ OPTg+s.

Lemma 10. For every i = 1, 2, . . . , blog2(n+ λk)− 1c, suppose that gRi
+ h is L2-Lipschitz where |Ri| =

θi =
⌈
n·(2+ 2

3 ε
′)·
(

lnN (P, ε/3
L2

xi)+` lnn+ln 2+ln log2 (n+λk)
)

ε′2xi

⌉
,

(a) if xi = n+k
2i > OPTg+s, then with probability at most 1

2n` log2(n+λk) ,

(ĝRi
+ s)(yi) ≥ (1 + ε′ + ε/3)xi;

(b) if xi = n+k
2i ≤ OPTg+s, then with probability at most 1

2n` log2(n+λk) ,

(ĝRi + s)(yi) ≥ (1 + ε′ + ε/3)OPTg+s.

Proof. Let Ei be the ε/3
L2
xi-net such that |Ei| = N (P, ε/3L2

xi) and let πi(x) : P → Ei denote the mapping
such that ||πi(x)− x||2 ≤ ε/3

L2
xi. Since gRi

+ h is L2-Lipschitz, we only have to prove that
(a’) if xi = n+k

2i > OPTg+s, then with probability at most 1
2n` log2(n+λk) ,

(ĝRi + s)(πi(yi)) ≥ (1 + ε′)xi;

(b’) if xi = n+k
2i ≤ OPTg+s, then with probability at most 1

2n` log2(n+λk) ,

(ĝRi + s)(πi(yi)) ≥ (1 + ε′)OPTg+s.

Let XRi
j (x) = 1−

∏
v∈Rj

(1− hv(x)) where Ri = {R1, R2, . . . , Rθi
}, then XRi

j (x) ∈ [0, 1] and ĝRi
(x) =

n
θ

∑θ
j=1X

Ri

h (x).

20

We first prove (a’). We first fix a y ∈ P, then if xi = n+k
2i > OPTg+s, we have

Pr {(ĝRi + s)(y) ≥ (1 + ε′)xi}

= Pr

nθ
θi∑
j=1

XRi
j (y) + s(y) ≥ (1 + ε′)xi


= Pr

nθ
θi∑
j=1

XRi
j (y)− g(y) ≥ (1 + ε′)xi − s(y)− g(y)


≤Pr


θi∑
j=1

XRi
j (y)− θi

n
g(y) ≥ θi

n
ε′xi


≤ exp

−
(
ε′xi

g(y)

)2

2 + 2
3
ε′xi

g(y)

θi
n
g(y)


= exp

(
− (ε′xi)2

2g(y) + 2
3ε
′xi

θi
n

)

≤ exp
(
− ε′2xi

2 + 2
3ε
′
θi
n

)

≤ exp

− ε′2xi

2 + 2
3ε
′

1
n

n ·
(
2 + 2

3ε
′) · (lnN (P, ε/3L2

xi) + ` lnn+ ln 2 + ln log2 (n+ λk)
)

ε′2xi


= 1

2n` · N (P, ε/3L2
xi) · log2 (n+ λk)

.

Then note that there are at most N (P, ε
L2
xi) possibilities for πi(yi), so applying the union bound, we have

Pr {(ĝRi + s)(πi(yi)) ≥ (1 + ε′)xi} ≤
1

2n` log2(n+ λk) .

Then we prove (b’). If xi = n+k
2i ≤ OPTg+s, then for any fixed y ∈ P, we have

Pr {(ĝRi
+ s)(y) ≥ (1 + ε′)OPTg+s}

= Pr

nθ
θi∑
j=1

XRi
j (y) + s(y) ≥ (1 + ε′)OPTg+s


= Pr

nθ
θi∑
j=1

XRi
j (y)− g(y) ≥ (1 + ε′)OPTg+s − s(y)− g(y)


≤Pr


θi∑
j=1

XRi
j (y)− θi

n
g(y) ≥ θi

n
ε′OPTg+s


≤ exp

−
(
ε′OPTg+s

g(y)

)2

2 + 2
3
ε′OPTg+s

g(y)

θi
n
g(y)


= exp

(
− (ε′OPTg+s)2

2g(y) + 2
3ε
′OPTg+s

θi
n

)

21

≤ exp
(
−ε
′2OPTg+s
2 + 2

3ε
′

θi
n

)

≤ exp

−ε′2OPTg+s
2 + 2

3ε
′

1
n

n ·
(
2 + 2

3ε
′) · (lnN (P, ε/3L2

xi) + ` lnn+ ln 2 + ln log2 (n+ λk)
)

ε′2xi


≤ 1

2n` · N (P, ε/3L2
xi) · log2 (n+ λk)

.

Then similar to the proof of (a’), applying the union bound will conclude the proof.

Then with the help of Lemma 10, we can prove Theorem 1.

Theorem 1. For any ε, `, α > 0, for any (α, ε/3)-approximate gradient algorithm A for ĝR + s, with
probability at least 1 − 1

n` , Grad-RIS outputs a solution x that is an (α − ε)-approximation of the optimal
solution OPTg+s of CIM-BS, i.e. (g + s)(x) ≥ (α− ε)OPTg+s.

Proof of Theorem 1. First we show that with probability at least 1 − 1
2n` , the output lower bound LB ≤

OPTg+s. We first prove the case when OPTg+s ≥ xblog2(n+λk)c−1. Let k denote the smallest index such that
OPTg+s ≥ xk. Then for any i ≤ k − 1, we have OPTg+s < xi and for any j ≥ k, we have OPTg+s ≥ xj .
Then from Lemma 10 and union bound, we know that with probability at least 1

2n` , for every i ≤ k − 1,
(ĝRi + s)(πi(yi)) ≥ (1 + ε′)xi, and for every j ≥ k, we have (ĝRj + s)(yj) ≥ (1 + ε′ + ε/3)OPTg+s. Then
from the definition of the algorithm, we know that LB ≤ OPTg+s.

Then for the case when OPTg+s < xblog2(n+λk)c−1, from the union bound, we know that with probability
at least 1− 1

2n` the ‘break’ statement will not be executed. So LB = 1 ≤ OPTg+s.
Then we bound the probability that the algorithm does not return an α− ε approximation. Let A denote

the event that the algorithm does not return an α− ε approximation, and B denote the event that the output
of the Sampling procedure LB > OPTg+s. We want to show that Pr{A} ≤ 1

n` . We have

Pr{A} = Pr{A ∧ B}+ Pr{A ∧ ¬B}
≤Pr{B}+ Pr{A|¬B}.

From Lemma 10, we have Pr{B} ≤ 1
2n` . Since we generate new RR-sets before using the oracle to get the

solution, so LB can be viewed as fixed, and from Lemma 9, we know that Pr{A|¬B} ≤ 1
2n` . Combined them

together, we complete the proof.

B Omitted Proofs in Subsection 3.3
B.1 Proof of Theorem 2
In this section, we give the formal proof of Theorem 2. First we slightly review the iteration step and the
notations. For the proximal gradient descent, the iteration is shown as follows:{

x(t+1) = prox−ηtf2(x(t) + ηtv
(t)),where E[v(t)] = ∇f1(x(t)),

proxφ(x) := argminy∈P(φ(y) + 1
2 ||x− y||22), for any convex function φ, (7)

where ηt ≤ 1
β is the step size and v(t) is the stochastic gradient at x(t) . Note that without loss of

generality, we can assume that f2(x) = −∞ for all x /∈ P, and we have argminy∈P(φ(y) + 1
2 ||x − y||22) =

argminy(φ(y) + 1
2 ||x− y||22). Let Gη(x) = 1

η (x− prox−ηf2(x + ηv)) where v is the stochastic gradient of f1

at point x, then we have x(t+1) = x(t) − ηtGηt
(x(t)).

To analyze the convergence of the proximal gradient descent, we have the following proposition from [3].

22

Proposition 3. If the function f(x) is DR-submodular and monotone, we have

〈∇f(x),x− y〉 ≤ 2f(x)− f(x ∧ y)− f(x ∨ y).

Lemma 11. Let u = Gη(x) + v, then u ∈ −∂f2(x − ηGη(x)), i.e. u is the subgradient of −f2 at point
x− ηGη(x). Here v is the stochastic gradient of f1 at point x, and Gη(x) = 1

η (x− prox−ηf2(x + ηv)).

Proof. First it is easy to show that if g is convex and u = proxg(x), then we have x−u ∈ ∂g(u). This is due
to the fact that u minimize the function g1(y) = g(y) + 1

2 ||y − x||22, and g1(y) is convex in y. Then we have

0 ∈ ∂g(u) + u− x⇒ x− u ∈ ∂g(u).

Then note that x− ηGη(x) = prox−ηf2(x + ηv), then we have

x + ηv − prox−ηf2(x + η∇f(x)) ∈ −η∂f2(x− ηGη(x)),

and rearranging the terms we have

η(v +Gη(x)) ∈ −η∂f2(x− ηGη(x)),

which concludes the proof.

Lemma 12. Suppose f1(x) is a monotone DR-submodular function on convex set P and f2(x) is concave
on set P. Note that we assume f2(x) = −∞ for all x /∈ P. If f1(x) is β-smooth, and η ≤ 1

β is the step size,
then for any x, z ∈ P, we have

(f1 + f2)(x− ηGη(x)) + (f1 + f2)(x) ≥(f1 + f2)(z) + η

2 ||Gη(x)||22 −Gη(x)T (x− z)

+ f2(x)− (v −∇f1(x))T (x− ηGη(x)− z).

Proof. First note that x−ηGη(x) ∈ P , since x−ηGη(x) = prox−ηf2(x(k) +ηv(k)) where v(k) is the stochastic
gradient of f1 at point x(k), and we know that −ηf2(x) = +∞ for all x /∈ P.

From the smoothness of function f1 and the convexity of −f2 and the previous lemma(Lemma 11), we
have

− (f1 + f2)(x− ηGη(x))
=− f1(x− ηGη(x))− f2(x− ηGη(x))

≤− f1(x) + 〈−∇f1(x),−ηGη(x)〉+ β

2 ||ηGη(x)||22 − f2(x− ηGη(x))

≤− f1(x) + η∇f1(x)TGη(x) + β

2 ||ηGη(x)||22

− f2(z) + (v +Gη(x))T (x− ηGη(x)− z)

=− f1(x) + η∇f1(x)TGη(x) + β

2 ||ηGη(x)||22

− f2(z) + (∇f1(x) +Gη(x))T (x− ηGη(x)− z) + (v −∇f1(x))T (x− ηGη(x)− z)

=− f1(x) +∇f1(x)T (x− z)− β

2 ||ηGη(x)||22 − f2(z) +Gη(x)T (x− z)

+ (v −∇f1(x))T (x− ηGη(x)− z).

Then from the proposition(Proposition 3)

〈∇f1(x),x− z〉 ≤ 2f1(x)− f1(x ∧ z)− f1(x ∨ z) ≤ 2f1(x)− f1(z),

23

we have

−(f1 + f2)(x− ηGη(x)) ≤− f1(x) +∇f1(x)T (x− z)− β

2 ||ηGη(x)||22 − f2(z)

+Gη(x)T (x− z) + (v −∇f1(x))T (x− ηGη(x)− z)

≤− f1(x) + 2f1(x)− f1(z)− η

2 ||Gη(x)||22 − f2(z)

+Gη(x)T (x− z) + (v −∇f1(x))T (x− ηGη(x)− z)

=f1(x)− (f1 + f2)(z) +Gη(x)T (x− z)− η

2 ||Gη(x)||22

+ (v −∇f1(x))T (x− ηGη(x)− z).

Rearranging the terms, we have

(f1 + f2)(x− ηGη(x)) + (f1 + f2)(x) ≥(f1 + f2)(z) + η

2 ||Gη(x)||22 −Gη(x)T (x− z)

+ f2(x)− (v −∇f1(x))T (x− ηGη(x)− z).

Theorem 2. Suppose that P is a convex set, function f1(x) is β-smooth, non-negative, monotone, and DR-
submodular on P, f2(x) is non-negative and concave on P. Let x∗ be the point that maximizes f1(x) + f2(x).
Suppose that for some σ > 0, the stochastic gradient v(t) satisfies E||v(t) −∇f1(x(t))||22 ≤ σ2 for all t, then
for all T > 0, if we set ηt = η = 1/(β + σ

∆
√

2T), and iterate as shown in (3) starting from x(0) ∈ P, we have

E
[

max
t=0,1,2,...,T

(f1 + f2)(x(t))
]

≥ 1
2(f1 + f2)(x∗)− β∆2

4T −
σ∆√
2T

.

Proof of Theorem 2. Note that we assume the function f2 to be the concave extension of the original function
d, i.e. f2(x) = −∞ for all x /∈ P. Then we know that

x(t+1) = prox−ηf2(x(t) + ηtv
(t)) ∈ P,

which means that f2(x(t+1)) ≥ 0, for all t = 1, 2, . . . , T . Then in the previous lemma, let z = x∗ where x∗

maximize f1 + f2 in the set P. We first consider the case when we have exact gradient v(t) = ∇f1(x(t)) and
we set ηt = η = 1

β , and we have

(f1 + f2)(x(t+1)) + (f1 + f2)(x(t))

≥(f1 + f2)(x∗) + η

2 ||Gη(x(t))||22 −Gη(x(t))T (x(t) − x∗) + f2(x(t))

≥(f1 + f2)(x∗) + η

2 ||Gη(x(t))||22 −Gη(x(t))T (x(t) − x∗)

=(f1 + f2)(x∗) + 1
2η (ηGη(x(t)))T (ηGη(ηx(t))− 2x(t) + 2x∗)

=(f1 + f2)(x∗) + 1
2η

(
||ηGη(x(t))− x(t) + x∗||22 − ||x(t) − x∗||22

)
=(f1 + f2)(x∗) + 1

2η

(
||x(t+1) − x∗||22 − ||x(t) − x∗||22

)
.

24

Then we sum up the above inequalities and we get

T−1∑
t=0

((f1 + f2)(x(t+1)) + (f1 + f2)(x(t)))

≥
T−1∑
t=0

(
(f1 + f2)(x∗) + 1

2η

(
||x(t+1) − x∗||22 − ||x(t) − x∗||22

))
=T (f1 + f2)(x∗) + 1

2η ||x
(T) − x∗||22 −

1
2η ||x

(0) − x∗||22

≥T (f1 + f2)(x∗)− 1
2η ||x

(0) − x∗||22

≥T (f1 + f2)(x∗)− 1
2η∆2.

Then, we complete the proof by the fact that

max
t=0,1,2,...,T

h(x(t)) ≥ 1
2T

T−1∑
t=0

(h(x(t+1)) + h(x(t))),

and we have
max

t=0,1,2,...,T
h(x(t)) ≥ 1

2(f1 + f2)(x∗)− β∆2

4T .

Then we prove the stochastic gradient case. We first have the following property [8]: For convex function φ
and any x,y, we have

||proxφ(x)− proxφ(y)||2 ≤ ||x− y||2.

From the previous lemma and the previous property, we take the expectation of v(t) and we can get

Ev(t)(f1 + f2)(x(t+1)) + (f1 + f2)(x(t))

≥(f1 + f2)(x∗) + η

2Ev(t) ||Gη(x(t))||22 − Ev(t)Gη(x(t))T (x(t) − x∗) + f2(x(t))

− Ev(t)(v(t) −∇f1(x(t)))T (x(t) − ηGη(x(t))− x∗)

=(f1 + f2)(x∗) + η

2Ev(t) ||Gη(x(t))||22 − Ev(t)Gη(x(t))T (x(t) − x∗) + f2(x(t))

− Ev(v(t) −∇f1(x(t)))T (prox−ηf2(x(t) + ηv(t))− prox−ηf2(x(t) + η∇f1(x(t))))

≥(f1 + f2)(x∗) + η

2Ev(t) ||Gη(x(t))||22 − Ev(t)Gη(x(t))T (x(t) − x∗) + f2(x(t))

− ηEv||v(t) −∇f1(x(t))||22
≥(f1 + f2)(x∗) + η

2Ev(t) ||Gη(x(t))||22 − Ev(t)Gη(x(t))T (x(t) − x∗)− σ2η

=(f1 + f2)(x∗) + 1
2ηEv(t)(ηGη(x(t)))T (ηGη(ηx(t))− 2x(t) + 2x∗)− σ2η

=(f1 + f2)(x∗) + 1
2ηEv(t)

(
||ηGη(x(t))− x(t) + x∗||22 − ||x(t) − x∗||22

)
− σ2η

=(f1 + f2)(x∗) + 1
2ηEv(t)

(
||x(t+1) − x∗||22 − ||x(t) − x∗||22

)
− σ2η.

Then we take expectation through all the randomness and sum them up, we have

T−1∑
t=0

(E(f1 + f2)(x(t+1)) + E(f1 + f2)(x(t)))

25

≥
T−1∑
t=0

E
(

(f1 + f2)(x∗) + 1
2η

(
||x(t+1) − x∗||22 − ||x(t) − x∗||22

))
− Tσ2η

=T (f1 + f2)(x∗) + 1
2ηE||x

(T) − x∗||22 −
1
2η ||x

(0) − x∗||22 − Tσ2η

≥T (f1 + f2)(x∗)− 1
2η ||x

(0) − x∗||22 − Tσ2η

≥T (f1 + f2)(x∗)− 1
2η∆2 − Tσ2η.

Then we plug in η = 1/(β + σ
∆
√

2T), we have

E max
t=0,1,2,...,T

(f1 + f2)(x(t))

≥ max
t=0,1,2,...,T

E(f1 + f2)(x(t))

≥ 1
2T

T−1∑
t=0

(E(f1 + f2)(x(t+1)) + E(f1 + f2)(x(t)))

≥1
2(f1 + f2)(x∗)− 1

2T

(
1
2η∆2 + Tσ2η

)
≥1

2(f1 + f2)(x∗)− β∆2

4T −
σ∆√
2T

.

B.2 Proofs of Lemma 3
The following lemma is the more detailed version of Lemma 3.

Lemma 13 (Detailed version of Lemma 3). If functions hv(x)’s are Lh-Lipschitz, then function ĝR(x) is
(ν(1)(R)nLh)-Lipschitz, and function g(x) is (n2Lh)-Lipschitz. If functions hv(x)’s are βh-smooth, then
function ĝR(x) is (ν(1)(R)nβh + ν(2)(R)nL2

h)-smooth. The gradient of function ĝR(x) is

∇ĝR(x) = n

θ

∑
R∈R

∑
v′∈R

∇hv′(x)

 ∏
v∈R,v 6=v′

(1− hv(x))

 ,

and can be computed in time O(
∑
R∈R |R|(1 + Th)) if we assume that the gradient of hv(x) can be generated

in time O(Th).

Proof of Lemma 13. First we have the following formula for the gradient of ĝR(x).

∇ĝR(x) =∇n
θ

∑
R∈R

(
1−

∏
v∈R

(1− hv(x))
)

=n

θ

∑
R∈R
∇

(
1−

∏
v∈R

(1− hv(x))
)

=n

θ

∑
R∈R

∑
v′∈R

∇hv′(x)

 ∏
v∈R,v 6=v′

(1− hv(x))

 .

Next we show that we can generate the exact gradient of ĝR(x) in O(
∑
R∈R |R|) time(assuming that generating

the gradient of hv needs O(1) time). First without loss of generality, we can assume that (1 − hv(x) 6= 0.

26

Otherwise, if 1− hu(x) = 0 and u ∈ R, then
∏
v∈R,v 6=u(1− hu(x)) = 0, and the problem is simpler. Then

we can compute
∏
v∈R(1 − hv(x)) in O(|R|) time and then compute

∏
v∈R,v 6=v′(1 − hv(x)) in O(1) time.

Then computing
∑
v′∈R∇hv′(x)

(∏
v∈R,v 6=v′(1− hv(x))

)
needs another O(|R|Th) time, and the total time

complexity to compute the gradient ∇ĝR(x) is O(
∑
R∈R |R|(1 +Th)). Then we compute the gradient of g(x).

∇g(x) =
∑
S⊆V

σ(S)

∑
u′∈S
∇xhu′(x)

 ∏
u∈S,u 6=u′

hu(x)

(∏
v/∈S

(1− hv(x))
)

−
∑
v′ /∈S

∇xhv′(x)
(∏
u∈S

hu(x)
) ∏

v/∈S,v 6=v′
(1− hv(x))


=
∑
u′∈V

 ∑
S:u′∈S

σ(S)

 ∏
u∈S,u 6=u′

hu(x)

(∏
v/∈S

(1− hv(x))
)
· ∇hu′(x)

−
∑

T :u′ /∈T

σ(T)
(∏
u∈T

hu(x)
) ∏

v/∈T,v 6=u′
(1− hv(x))

 · ∇hu′(x)


=
∑
u′∈V

fu′(x)∇hu′(x),

where fu′(x) is defined as

fu′(x) :=
∑

S:u′∈S
σ(S)

 ∏
u∈S,u 6=u′

hu(x)

(∏
v/∈S

(1− hv(x))
)

−
∑

T :u′ /∈T

σ(T)
(∏
u∈T

hu(x)
) ∏

v/∈T,v 6=u′
(1− hv(x))

 .

We know that

|fu′(x)|

=
∣∣∣∣ ∑
S:u′∈S

σ(S)

 ∏
u∈S,u 6=u′

hu(x)

(∏
v/∈S

(1− hv(x))
)
−

∑
T :u′ /∈T

σ(T)
(∏
u∈T

hu(x)
) ∏

v/∈T,v 6=u′
(1− hv(x))

∣∣∣∣
≤
∣∣∣∣ ∑
S:u′∈S

σ(S)

 ∏
u∈S,u 6=u′

hu(x)

(∏
v/∈S

(1− hv(x))
)∣∣∣∣+∣∣∣∣ ∑

T :u′ /∈T

σ(T)
(∏
u∈T

hu(x)
) ∏

v/∈T,v 6=u′
(1− hv(x))

∣∣∣∣
=
∑

S:u′∈S
σ(S)

 ∏
u∈S,u 6=u′

hu(x)

(∏
v/∈S

(1− hv(x))
)

+
∑

T :u′ /∈T

σ(T)
(∏
u∈T

hu(x)
) ∏

v/∈T,v 6=u′
(1− hv(x))


≤n

∑
S:u′∈S

 ∏
u∈S,u 6=u′

hu(x)

(∏
v/∈S

(1− hv(x))
)

+ n
∑

T :u′ /∈T

(∏
u∈T

hu(x)
) ∏

v/∈T,v 6=u′
(1− hv(x))


=nhu′(x) + n(1− hu′(x))
=n.

Then we have

||∇g(x)||2 =||
∑
u′∈V

fu′(x)∇hu′(x)||2

27

≤
∑
u′∈V

|fu′(x)| · ||∇hu′(x)||2

≤
∑
u′∈V

nLh

≤n2Lh.

Then we know that g(x) is 2n2Lh-Lipschitz. We also have

||∇ĝR(x)||2 =
∣∣∣∣∣∣∣∣nθ ∑

R∈R

∑
v′∈R

∇hv′(x)

 ∏
v∈R,v 6=v′

(1− hv(x))

∣∣∣∣∣∣∣∣
2

≤n
θ

∑
R∈R

∑
v′∈R

||∇hv′(x)||2

 ∏
v∈R,v 6=v′

(1− hv(x))


≤ν(1)(R)nLh.

So the function ĝR(x) is also n2Lh-Lipschitz. Then we show the smoothness of the function ĝR(x). We have

||∇ĝR(x)−∇ĝR(y)||2

=
∣∣∣∣∣∣∣∣nθ ∑

R∈R

∑
v′∈R

∇hv′(x)

 ∏
v∈R,v 6=v′

(1− hv(x))

− n

θ

∑
R∈R

∑
v′∈R

∇hv′(y)

 ∏
v∈R,v 6=v′

(1− hv(y))

∣∣∣∣∣∣∣∣
2

≤n
θ

∑
R∈R

∑
v′∈R

∣∣∣∣∣∣∣∣∇hv′(x)

 ∏
v∈R,v 6=v′

(1− hv(x))

−∇hv′(y)

 ∏
v∈R,v 6=v′

(1− hv(y))

∣∣∣∣∣∣∣∣
2

=n

θ

∑
R∈R

∑
v′∈R

∣∣∣∣∣∣∣∣∇hv′(x)

 ∏
v∈R,v 6=v′

(1− hv(x))

−∇hv′(y)

 ∏
v∈R,v 6=v′

(1− hv(x))


+∇hv′(y)

 ∏
v∈R,v 6=v′

(1− hv(x))

−∇hv′(y)

 ∏
v∈R,v 6=v′

(1− hv(y))

∣∣∣∣∣∣∣∣
2

≤ n

θ

∑
R∈R

∑
v′∈R

∣∣∣∣∣∣∣∣∇hv′(x)

 ∏
v∈R,v 6=v′

(1− hv(x))

−∇hv′(y)

 ∏
v∈R,v 6=v′

(1− hv(x))

∣∣∣∣∣∣∣∣
2︸ ︷︷ ︸

A

+ n

θ

∑
R∈R

∑
v′∈R

∣∣∣∣∣∣∣∣∇hv′(y)

 ∏
v∈R,v 6=v′

(1− hv(x))

−∇hv′(y)

 ∏
v∈R,v 6=v′

(1− hv(y))

∣∣∣∣∣∣∣∣
2︸ ︷︷ ︸

B

.

For term A, we have

A =n

θ

∑
R∈R

∑
v′∈R

∣∣∣∣ ∏
v∈R,v 6=v′

(1− hv(x))
∣∣∣∣ · ||∇hv′(x)−∇hv′(y)||2

≤n
θ

∑
R∈R

∑
v′∈R

·1 · βh||x− y||2

≤βhν(1)(R)n||x− y||2,

28

where we use the assumption that hv(x) is βh-smooth. As for the term B, we first have∣∣∣∣ ∏
v∈R\{v′}={v1,...,v|R|−1}

(1− hv(x))−
∏

v∈R\{v′}

(1− hv(y))
∣∣∣∣

=
∣∣∣∣ ∏
v∈R\{v′}

(1− hv(x))−
|R|−2∏
i=1

(1− hvi
(x)) · (1− hv|R|−1(y)

+
|R|−2∏
i=1

(1− hvi
(x)) · (1− hv|R|−1(y)−

|R|−3∏
i=1

(1− hvi
(x)) ·

|R|−1∏
j=|R|−2

(1− hvj
(y))

+ · · ·+ (1− hv1(x)) ·
|R|−1∏
j=2

(1− hvj
(y))−

∏
v∈R\{v′}

(1− hv(y))
∣∣∣∣

≤
|R|−1∑
i=1
|1− hvi

(x)− 1 + hvi
(y)|

≤|R|Lh||x− y||2,

where the last inequality comes from the Lh-lipschitz property of the function hv(x). Then we have

B ≤n
θ

∑
R∈R

∑
v′∈R

∣∣∣∣ ∏
v∈R\{v′}={v1,...,v|R|−1}

(1− hv(x))−
∏

v∈R\{v′}

(1− hv(y))
∣∣∣∣ · ||∇hv′(y)||2

≤n
θ

∑
R∈R

∑
v′∈R

|R|Lh||x− y||2 · ||∇hv′(y)||2

≤ν(2)(R)nL2
h||x− y||2.

Then we know that the function is (ν(1)(R)nβh + ν(2)(R)nL2
h)-smooth.

B.3 Proof of Lemma 4
Lemma 4. When c(x) = ||x||1 and D = Rd+, the proximal step can be done in time O(d log d). When
c(x) = ||x||2 and D = Rd+, the proximal step can be done in O(d).

Proof of Lemma 4. First, it is easy to know that if c(x) = ||x||2 and D = Rd+, then the proximal step can be
finished in time O(d). In this case, the set P is defined as P = {x| ||x||2 ≤ k,x � 0}, and proximal step is
defined as

prox−ηs(x) := argmin
y∈P

−ηs(y) + 1
2 ||x− y||2 = argmin

y∈P
ηλ||y||2 + 1

2 ||x− y||2.

It is obvious that y should lies in the line generated by 0 and x, and we can solve for y by using the basic
technique for solving optimal value of a uni-variate quadratic function.

Then we show that how to do the proximal step when c(x) = ||x||1 and D = Rd+. In this case, we know
that P = {x| ||x||1 ≤ k,x � 0}, and we want to find y ∈ P to minimize

prox−ηs(x) := argmin
y∈P

−ηs(y) + 1
2 ||x− y||2 = argmin

y∈P
ηλ||y||1 + 1

2 ||x− y||2.

We use η′ = η · λ for convenience. The proximal step can also be written as minimizing

min
yi≥0,

∑
i
yi≤k

η′
∑
i

yi + 1
2
∑
i

(xi − yi)2.

29

First, we have yi ≤ max{xi − η′, 0} for all i. If not, suppose yi > max{xi − η′, 0}, then we let y′i =
max{xi − η′, 0}. The new solution has smaller value and is also feasible.

Then we also have the following property: if y is optimal, then for any i 6= j, if yi, yj 6= 0, then we have
xi − yi = xj − yj . Suppose that xi − yi > xj − yj , then let ε be sufficiently small. Let y′i = yi + ε and
y′j = yj − ε, the new solution also lies in set P, but the function value of η′

∑
i yi + 1

2
∑
i(xi − yi)2 become

smaller.
We also have: suppose y is optimal, then if xi ≥ xj . If yi = 0, then yj = 0. Otherwise, suppose yi = 0 but

yj > 0. We can pick sufficiently small ε and let y′i = yi + ε and y′j = yj − ε. The function value will decrease
but the new solution is also feasible.

We also have: suppose y is optimal, then if yi = 0, then for any j such that yj 6= 0, xj − yj ≥ xi − yi.
Otherwise, we can find sufficiently small ε and let y′i = yi + ε, y′j = yj − ε. The function value will decrease
and the new solution is feasible.

Given the previous properties, we have the following structure of optimal value y. Suppose that {(i)} is a
permutation of [d] such that x(1) ≤ x(2) ≤ · · · ≤ x(d), then there exists i0 ∈ [d] such that y(i) = 0 for all i ≤ i0,
and 0 < y(i) ≤ x(i) − λ′ for all i > i0. Besides, for all i, j > i0, we have x(i) − y(i) = x(j) − y(j) > x(i0) − y(i0).
We also have one of the following: For all i, yi = max{xi − η′, 0}; otherwise,

∑
i yi = k. Then, there is only

one i0 that satisfy this the previous structure, and we show that we can use O(d log d) time to find i0. We
first use O(d log d) time to sort xi and get x(i). We first let yi = max{xi − η′, 0} and we test if

∑
i yi ≤ k. If

yes, then y is the optimal solution. Otherwise, we know that
∑
i yi = k. We binary search for (i0), and we

use i1 to denote the binary search variable. Each time we set y(j) = 0 for all j ≤ i1, and we set y(j) such that
x(j) − y(j) are the same for all j > i1 and

∑
i yi = k. Then we test if x(d) − y(d) ≥ x(i1) − y(i1), and y(j) ≥ 0

for all j > i1. If both are yes, then i0 is i1 and y is the optimal solution. If there exists j > i1 such that
y(j) < 0, then i1 should be larger. If x(d) − y(d) < x(i1) − y(i1), then i1 should be smaller. Each test needs
time O(d), and there are at most O(log d) binary search step, so the total complexity is O(d log d).

B.4 Proof of Lemma 5
Lemma 5. In the case of independent strategy activation, suppose that ḡR + s is Lḡ+s-Lipschitz. If we use
projected subgradient descent to optimize the function (ḡR+ s)(x) with step size ηt = ∆

Lḡ+s

√
t
and let y denote

the output where (ḡR+ s)(y) ≥ maxx∈P(ḡR+ s)(x)− ε. Then (ĝR+ s)(y) ≥
(
1− 1

e

)
maxx∈P(ĝR+ s)(x)− ε,

and y can be solved in (∆Lḡ+s)2

ε2 iterations.

Proof of Lemma 5. First, we optimize the function (ḡR+ s)(x) in the set P . First, it is easy to know that the
function (ḡR + s)(x) is concave, since first we know that s(x) is concave, qv,j(x) are concave for all v, j, the
constant 1 is also concave. Then because addition of 2 concave function is also concave, and the point-wise
minimum of 2 concave function is also concave, so the function (ḡR + s)(x) is concave. Then since we assume
that the function (ḡR + s)(x) is Lḡ+s-Lipschitz, by the projected subgradient descent, in O

(
Lḡ+s

ε2

)
iteration,

we can get a solution y such that (ḡR + s)(y) ≥ maxx∈P(ḡR + s)(x)− ε. Then we show that

(ĝR + s)(y) ≥
(

1− 1
e

)
max
x∈P

(ĝR + s)(x)− ε.

From Proposition 1, we can know that(
1− 1

e

)
ḡR(x) ≤ ĝR(x) ≤ ḡR(x),∀x ∈ P,

and because s(x) is non-negative on set P, we have(
1− 1

e

)
(ḡR + s)(y) ≤ (ĝR + s)(y) ≤ (ḡR + s)(y).

30

Then we have

(ĝR + s)(y) ≥
(

1− 1
e

)
(ḡR + s)(y)

≥
(

1− 1
e

)(
max
x∈P

(ḡR + s)(x)− ε
)

≥
(

1− 1
e

)
max
x∈P

(ĝR + s)(x)− ε.

B.5 Proof of Lemma 6
The following lemma is a more detailed version of Lemma 6.

Lemma 14 (Detailed version of Lemma 6). Suppose that functions qv,j(xj)’s are Lq-Lipschitz, then function
g(x) is n2

√
dLq-Lipschitz, and functions ĝR(x) and ḡR(x) are ν(1)(R)n

√
dLq-Lipschitz. The subgradient of

the function ḡR(x) is

∂ḡR(x) = n

θ

∑
R∈R

∂min

1,
∑

j∈[d],v∈R

qv,j(xj)


= n

θ

∑
R∈R


0, if

∑
j∈[d],v∈R

qv,j(xj) ≥ 1

∑
v∈R,j∈[d]

∇qv,j(xj), if
∑

j∈[d],v∈R

qv,j(xj) < 1

and can be computed in time O(Tq) if we assume that the gradient and function value of qv,j(x) can be
generated in time O(

∑
R∈R |R|(1 + Tq)).

Proof of Lemma 14. First recall that hv(x) = 1−
∏
j∈[d](1− qv,j(xj)). Then since qv,j(x) is Lq-Lipschitz, it

can be easily shown that hv(x) is Lq
√
d-Lipschitz, since

|hv(x)− hv(y)| =
∣∣∣∣1− ∏

j∈[d]

(1− qv,j(xj))− 1 +
∏
j∈[d]

(1− qv,j(xj))
∣∣∣∣

≤
∣∣∣∣ d∏
j=1

(1− qv,j(xj))− (1− qv,j(y1))
d∏
j=2

(1− qv,j(xj))
∣∣∣∣

+
∣∣∣∣(1− qv,j(y1))

d∏
j=2

(1− qv,j(yj))−
2∏
j=1

(1− qv,j(yj))
d∏
j=3

(1− qv,j(xj))
∣∣∣∣

+ · · ·+
∣∣∣∣ d−1∏
j=1

(1− qv,j(yj)) · (1− qv,j(xd))−
d∏
j=1

(1− qv,j(yj))
∣∣∣∣

≤
d∑
j=1
|qv,j(xj)− qv,j(yj)|

≤Lq · ||x− y||1
≤Lq
√
d||x− y||2.

31

Then from the previous lemma (Lemma 13), we can see that g(x) is n2
√
dLq-Lipschitz and ĝR(x) is all

ν(1)(R)n
√
dLq-Lipschitz. We also have

|ḡR(x)− ḡR(y)| ≤n
θ

∑
R∈R

∣∣∣∣min

1,
∑

j∈[d],v∈R

qv,j(xj)

−min

1,
∑

j∈[d],v∈R

qv,j(yj)


∣∣∣∣

≤n
θ

∑
R∈R

∣∣∣∣ ∑
j∈[d],v∈R

qv,j(xj)−
∑

j∈[d],v∈R

qv,j(yj)
∣∣∣∣

≤n
θ

∑
R∈R

∑
j∈[d],v∈R

|qv,j(xj)− qv,j(yj)|

≤n
θ

∑
R∈R

∑
j∈[d],v∈R

Lq|xj − yj |

≤n
θ

∑
R∈R

∑
v∈R

Lq||x− y||1

≤ν(1)(R)nLq
√
d||x− y||2.

As for the subgradient of ḡR(x) and the time complexity to generate the subgradient, it is trivial. Note that
in the time complexity

∑
R∈R |R|(1 + Tq), the constant 1 is used for basic operations.

C Omitted Proofs for Time Complexity (Theorem 5)
In this section, we present our time complexity results for ProxGrad-RIS and UpperGrad-RIS. We divide this
section into 2 parts. In the first part, we show the time complexity of ProxGrad-RIS and UpperGrad-RIS in a
general form (Theorem 6 and 7), and then Theorem 5 will become a corollary. However, the time complexity
bound in Theorem 6 and 7 is too conservative and cannot reflect the empirical running time in experiments.
In order to close this gap, we give time complexity bounds based on the moments of RR-set size in the
second part. Then we will give some statistics of the moments of RR-set size in the section describing our
experiments.

C.1 Proof of Theorem 5
In this subsection, we prove Theorem 5. We actually prove the full version of the running times for the
two algorithms in Theorems 6 and 7. Our proof follows from the original proof of the time complexity of
IMM algorithm. First, we have to show a lemma(Lemma 15), which states that in Algorithm 2, with high
probability, we output LB does not differ so much from the optimal value OPTg+s. For convenience, all the
notations follow from Algorithm 2. We use OPTg+s = (g + s)(x∗g+s) to denote the maximum value of (g + s)
in set P.

Lemma 15. For every i = 1, 2, . . . , blog2(n + λk)c − 1, if OPTg+s ≥ (1 + ε/3 + ε′)2 · xi/(α − ε/3), then
with probability at least 1− 1

2n`·N (P, ε/3
L2

xi)·log2 (n+λk)
, (ĝRi

+ s)(yi) ≥ (α− ε/3)OPTg+s/(1 + ε/3 + ε′) and

(ĝRi + s)(yi) ≥ (1 + ε/3 + ε′)xi.

Proof. First we know that (ĝRi
+ s)(yi) ≥ (α − ε/3) maxy∈P(ĝRi

+ s)(y). For any R, let XRi (x) =
1−

∏
v∈Ri

(1− hv(x)) where R = {R1, R2, . . . , Rθ}, then XRi (x) ∈ [0, 1] and ĝR(x) = n
θ

∑θ
i=1X

R
i (x). We

also know that XRi (x) are independent. By Chernoff Bound(Proposition 2), we have

Pr{(ĝRi + s)(yi) ≤ (α− ε/3)OPTg+s/(1 + ε/3 + ε′)}
≤Pr{(α− ε/3) max

y∈P
(ĝRi + s)(y) ≤ (α− ε/3)OPTg+s/(1 + ε/3 + ε′)}

32

= Pr{max
y∈P

(ĝRi + s)(y) ≤ OPTg+s/(1 + ε/3 + ε′)}

≤Pr{(ĝRi
+ s)(x∗g+s) ≤ OPTg+s/(1 + ε/3 + ε′)}

= Pr{ĝRi
(x∗g+s) ≤ OPTg+s/(1 + ε/3 + ε′)− s(x∗g+s)}

= Pr


θi∑
j=1

XRi
j (x∗g+s)

n

θi
≤ OPTg+s/(1 + ε/3 + ε′)− s(x∗g+s)


= Pr


θi∑
j=1

XRi
j (x∗g+s) ≤

θi
n
OPTg+s/(1 + ε/3 + ε′)− θi

n
s(x∗g+s)


= Pr


θi∑
j=1

XRi
j (x∗g+s)−

θi
n
g(x∗g+s) ≤

θi
n
OPTg+s/(1 + ε/3 + ε′)− θi

n
g(x∗g+s)−

θi
n
s(x∗g+s)


≤ exp

(
− ε′2

2(1 + ε/3 + ε′)2
θi
n
OPTg+s

)

≤ exp

− (1 + ε/3 + ε′)2 · xiε′2n ·
(
2 + 2

3ε
′) · (lnN (P, ε/3L2

xi) + ` lnn+ ln 2 + ln log2 (n+ λk)
)

2(α− ε/3)(1 + ε/3 + ε′)2nε′2xi


≤ 1

2n` · N (P, ε/3L2
xi) · log2 (n+ λk)

.

Combined with the assumption that OPTg+s ≥ (1 + ε/3 + ε′)2 · xi/(α− ε/3), we have: if (ĝRi + s)(yi) ≥
(α− ε/3)OPTg+s/(1 + ε/3 + ε′), then

(ĝRi
+s)(yi) ≥ (α−ε/3)OPTg+s/(1+ε/3+ε′) ≥ α− ε/3

1 + ε/3 + ε′
(1+ε/3+ε′)2 ·xi/(α−ε/3) = (1+ε/3+ε′)xi.

Then, with the previous high probability lemma, we can upper bound E[θ(1) + θ(2) + θiret
], where iret

denote the index of Algorithm 2 that break from the for-loop. We use L1, L2 to denote the Lipschitz constant
of the function (g + s) and the function (ĝRi + s).

Lemma 16. Let iret denote the index of Algorithm 2 that break from the for-loop. If we have n+λk = O(n`),
then

E[θ(1) + θ(2) + θiret
] = O

n · ln
(
n`N (P, ε

L1+L2
LB)

)
ε2OPTg+s

 .

Proof. Let xret denote the value xiret
when Algorithm 2 break from the for-loop. We first prove that,

E
[

1
xret

]
= O

(
1 + n+λk

n`

OPTg+s

)
.

Let i denote the smallest index such that OPTg+s ≥ (1 + ε/3 + ε′)2 · xi/(α − ε). From the previous
lemma(Lemma 15), we know that with probability at least 1− 1

2n`·N (P, ε
L2
xi)·log2 (n+λk) , we have

(ĝRi
+ s)(yi) ≥ (1 + ε/3 + ε′)xi,

so the algorithm will break from for-loop and xret ≥ xi. Let A denote the event that (ĝRi
+ s)(yi) ≥

(1 + ε/3 + ε′)xi. Let X = 1
xret

and we have

E[X] = E[X|A] Pr[A] + E[X|¬A] Pr[¬A].

33

We know that E[X|A] = O
(

1
OPTg+s

)
and Pr[A] ≤ 1. We also know that E[X|¬A] ≤ 1 since xj ≥ 1. Then

Pr[¬A] ≤ 1
2n` · N (P, ε/3L2

xi) · log2 (n+ λk)
= O

(
n+ λk

n`OPTg+s

)
,

where we use the fact that g(x) ≤ n and s(x) = λ(k − c(x)) ≤ λk. Then we have

E
[

1
xret

]
= O

(
1 + n+λk

n`

OPTg+s

)
= O

(
1

OPTg+s

)
.

Recall that

θi =


n ·
(
2 + 2

3ε
′) · (lnN (P, ε/3L2

xi) + ` lnn+ ln 2 + ln log2 (n+ λk)
)

ε′2xi

 ,
and

θ(1) =
8n · ln

(
4n`
)

LB · (α− ε/3)2ε2/9 , θ(2) =
2α′ · n · ln

(
4n`N (P, ε/3

L1+L2
LB)

)
(ε/3− 1

4 (α− ε/3)2ε/3)2LB
.

We know that LB ≥ xret, so we have

E[θ(1) + θ(2) + θiret
] = O

n · ln
(
n`N (P, ε/3

L1+L2
LB)

)
ε2/9OPTg+s

 = O

n · ln
(
n`N (P, ε

L1+L2
LB)

)
ε2OPTg+s

 .

The above lemma is the main lemma for the time complexity of Algorithm 1. Next, we show some
existing propositions and lemmas, which will help to prove the time complexity. The following lemmas and
assumptions comes from [23], and we use the lemmas and assumptions to prove Theorem 6 and 7.

Definition 4 (Martingale). A series of random variables X1, X2, . . . is a martingale, if for all i ≥ 1,
E[|Xi|] < +∞ and E[Xi+1|X1, . . . , Xi] = Xi.

Lemma 17 (Sufficient Condition for Martingale). Suppose X1, X2, . . . , Xt are t random variables on [0, 1],
which satisfy that there exists a constant µ, E[Xi|X1, . . . , Xi−1] = µ for all i ∈ [t]. Let Zi =

∑i
j=1(Xj − µ),

then Z1, Z2, . . . , Zt is a martingale.

Proposition 4 (Stopping Time of Martingale). Let random variable τ denote the stopping time of a
martingale {Xi}i≥1. If there is a constant c that is independent to {Xi}i≥1 and τ ≤ c, then E[Xτ] = E[X1].

Besides, we have the following assumptions.

Assumption 1. In the triggering model, the time complexity to sample a triggering set Tv for any v is
O(|N−(v)|), where N−(v) is the set of in-neighbors of node v.

Assumption 2. We assume that maxx∈P g(x) ≥ maxv∈V σ(v), where σ(v) denote the influence spread of
node v. Besides, we have OPTg+s ≥ maxv∈V σ(v).

Given a set R ⊆ V , let ω(R) denote the sum of in-degree of nodes in R. Based on Assumption 1, we know
that generating a RR-set needs time O(ω(R) + 1). Next, we use EPT = E[ω(R)] to denote the expectation of
ω(R), and we have the following lemma, which also comes from [23].

Lemma 18.
EPT = E[ω(R)] = m

n
· Eṽ[σ(ṽ)],

where σ(ṽ) denote the influence spread of node ṽ.

34

With the help of the previous lemma and proposition, we can prove Theorem 6 and Theorem 7, and their
corresponding corollaries.

Theorem 6. Under Assumption 1 and Assumption 2. Suppose that the proximal step can be finished in time
Tprox,. Besides, suppose that c(x) is Lc-Lipschitz and βc-smooth, hv(x) are Lh-Lipschitz and βh-smooth
for all v, and the gradient of hv(x) and c(x) can be generated in time Th and Tc. We also assume that the
balance variable λ is also a constant and n+ λk ≤ nl. Then the expected running time of Algorithm 1 with
proximal gradient descent oracle is bounded by

O

βhn2 + L2
hn

3

ε
·

(1 + Th)
(m+ n) · ln

(
n`N (P, ε

2n2Lh+2λLc
)
)

ε2 + log2(n+ λk)Tc


+ log2(n+ λk)(βhn2 + L2

hn
3)Tprox

ε

)
.

Proof of Theorem 6. Let iret denote the index where Algorithm 2 break from the for-loop. First, note that
in the sampling procedure, Algorithm 2 generate at most 2θiret

+ θ̃ number of RR-sets, which is bounded by
O(θ(1) + θ(2) + θiret). We use τ = 2θiret + θ̃ to denote the number of RR-sets. By Assumption 1, generating
such number of RR-sets needs time O(

∑τ
j=1(ω(Rj) + 1)). Let Wi =

∑i
j=1(ω(Rj)− EPT) for i = 1, . . . , τ .

Because the procedure to generate Rj is independent to the procedure that generates R1, . . . , Rj−1, we have
E[ω(Rj)|ω(R1), . . . , ω(Rj−1)] = E[ω(Rj)] = EPT. From Lemma 17, we know that {Wi}i≤τ is a martingale,
and τ is a stopping time. Obviously, τ has an upper bound, which can be derived by setting xret = 1 and
LB = 1. Then by the stopping time theorem(Proposition 4), the time complexity for generating RR-sets is
O(E[

∑τ
j=1(ω(Rj)+1)]) = O(E[Wτ]+E[τ ·(EPT+1)]) = O(E[θ(1)+θ(2)+θiret

]·(EPT+1)) = O(E[τ]·(EPT+1)).
Then, we count the total time complexity for calling the proximal gradient oracle. Each time we use

the proximal gradient to optimize ĝRi + s or ĝR + s, we will use O
(
β
εxi

)
or O

(
β
εLB

)
number of iterations,

where β is the smoothness constant for ĝRi
and ĝR. We can lower bound xi and OB by 1, and by Lemma 13,

we have ĝRi and ĝR are all (βhn2 + L2
hn

3)-smooth. So each time the number of iteration is upper bounded
by N = O

(
βhn

2+L2
hn

3

ε

)
. Each time we need a proximal step, so the total proximal step time complexity

is bounded by O
(

log2(n+λk)(βhn
2+L2

hn
3)Tprox

ε

)
. Then we consider the time complexity that generate the

gradient. By Lemma 13, the time complexity of generating gradient is O(
∑
R∈Ri

|R|(1 + Th) + Tc) or
O(
∑
R∈R |R|(1 + Th) + Tc), then the total time complexity for generating gradient is bounded by

O

N ·
2

∑
R∈Riret

|R|(1 + Th) +
∑
R∈R
|R|(1 + Th) + log2(n+ λk)Tc

 .

By the martingale stopping time theorem(Proposition 4), we know that

E[2
∑

R∈Riret

|R|+
∑
R∈R
|R|] = E[τ] · E[|R1|],

and |R1| ≤ ω(R1) + 1 since each RR-set is weak connected. Then we have

E[2
∑

R∈Riret

|R|+
∑
R∈R
|R|] ≤ E[τ] · (EPT + 1),

and the total expected time complexity of generating gradient is bounded by

O (N · ((1 + Th)(EPT + 1)E[τ] + log2(n+ λk)Tc)) .

35

Then the total expected time complexity is bounded by(the time to generate RR-set is far less than the time
to generate all of the gradient)

O

(
βhn

2 + L2
hn

3

ε
· ((1 + Th)(EPT + 1)E[τ] + log2(n+ λk)Tc)

+ log2(n+ λk)(βhn2 + L2
hn

3)Tprox
ε

)
.

By Assumption 2, Lemma 13, Lemma 16 and Lemma 18, we have

(EPT + 1)E[τ] =O

n · ln
(
n`N (P, ε

2n2Lh+2λLc
)LB

)
ε2OPTg+s

(m
n
· Eṽ[σ(ṽ)] + 1

)
≤O

 (m+ n) · ln
(
n`N (P, ε

2n2Lh+2λLc
)
)

ε2

 .

The total time complexity is bounded by(let Th and Tc be constants)

O

βhn2 + L2
hn

3

ε
·

(1 + Th)
(m+ n) · ln

(
n`N (P, ε

2n2Lh+2λLc
)
)

ε2 + log2(n+ λk)Tc


+ log2(n+ λk)(βhn2 + L2

hn
3)Tprox

ε

)
.

Theorem 7. Under Assumption 1 and Assumption 2. Suppose that the projection step can be finished in
time Tproj,. Besides, suppose that c(x) is Lc-Lipschitz and βc-smooth, qv,j(xj) are Lq-Lipschitz for all v, j,
and the gradient and function value of qv,l(xj) and c(x) can be generated in time Tq and Tc(Lc, Lq, βc, Tq, Tc
are all constants). We also assume that the balance variable λ is also a constant and n+ λk ≤ nl. Then the
expected running time of Algorithm 1 with proximal gradient descent oracle is bounded by

O

 (n2
√
dLq + λLc)2

ε2 ·

(1 + Th)
(m+ n) · ln

(
n`N (P, ε

2n2
√
dLq+λ2Lc

)
)

ε2 + log2(n+ λk)Tc


+ (n2

√
dLq + λLc)2 log2(n+ λk)Tproj

ε2

)
.

Proof of Theorem 7. The proof of this theorem is almost the same as the previous one. We only have to
change the iteration step from O

(
βhn

2+L2
hn

3

ε

)
to O

(
(n2√dLq+λLc)2

ε2

)
and the Lipschitz constant for ĝR and

g from n2Lh to n2
√
dLq.

The above 2 theorems are the main theorem of the the time complexity. First, we have the fact that when
c(x) = ||x||1 or c(x) = ||x||2, then proximal step and the projection step can all be finished in time Õ(d), and
the time to generate the function value and gradient of c(x) is also O(d). Besides, as shown in [25], we know
that the covering number N (P, ε) ≤ N (B1(k), ε) ≤ N (B2(k), ε) ≤ (3k/ε)d. Then since ||x||1 ≥ ||x2||, we
have B1(k) ⊆ B2(k), and N (B1(k), ε) ≤ (3k/ε)d. We can directly get the time complexity bounds in Theorem
5. N (P, ε) ≤ N (B1(k), ε) ≤ N (B2(k), ε) ≤ (3k/ε)d. Then since ||x||1 ≥ ||x2||, we have B1(k) ⊆ B2(k), and
N (B1(k), ε) ≤ (3k/ε)d. We can directly get the time complexity bounds in Theorem 5.

36

C.2 Time Complexity Bound Based on the Moments of RR Set Size
In this subsection, we give the proof of our time complexity bounds based on the moments of the size of the
RR-sets and the optimal value OPTg+s for ProxGrad-RIS and UpperGrad-RIS. We use ν(1), ν(2) and ν(3) to
denote the first, second and third moments of the mean size of a random generated RR-set. Formally, we have

ν(1) = ER[|R|], ν(2) = ER[|R|2], ν(3) = ER[|R|3].

Given the time complexity theorem in Theorem 8 and 9 and some statistics for the variable ν(1), ν(2), ν(3),
we can know why in experiments, ProxGrad-RIS and UpperGrad-RIS do not make so much difference with the
heuristic greedy algorithm in terms of the running time.

To derive the time complexity bounds based on the moments of the size of RR-sets, we need to slightly
revise our sampling algorithm. In Algorithm 2, we use the previous generated RR-sets and only generate
θi − θi−1 RR-sets in round i (line 6 of Algorithm 2). However, in this subsection, we assume that we generate
θi RR-sets in round i and we do not use the previous generated RR-sets. This is because we need to use the
martingale stopping time for each round, and to construct a martingale, we need the empirical moments
ν(1)(Ri), ν(2)(Ri), ν(3)(Ri) to be independent to Rj for all j < i. The following theorem summarizes the
time complexity of ProxGrad-RIS with the above resampling of RR sets adjustment.

Theorem 8. Under Assumption 1 and Assumption 2. Suppose that the proximal step can be finished in time
Tprox,. Besides, suppose that c(x) is Lc-Lipschitz and βc-smooth, hv(x) are Lh-Lipschitz and βh-smooth for
all v, and the gradient of hv(x) and c(x) can be generated in time Th and Tc. We also assume that the balance
variable λ is also a constant and n+ λk ≤ nl. Then the expected running time of ProxGrad-RIS (revised by
resampling of RR sets in each sampling iteration) is bounded by

O

n2(ν(2)βh + ν(3)L2
h) ln

(
n`N (P, ε

2n2
√
dLq+λ2Lc

)
)

ε3OPTg+s
(1 + Th)

+ν(1)nβh + ν(2)nL2
h

ε
log2(n+ λk)(Tc + Tprox) +

(m+ n) · ln
(
n`N (P, ε

2n2
√
dLq+λ2Lc

)
)

ε2

 .

Proof of Theorem 8. The first part is to compute the expected time to generate the RR-sets. This part is
similar to the same part in the proof of Theorem 6 and 7. Let iret denote the index where Algorithm 2 break
from the for-loop, and we know that Algorithm 2 generate at most 2θiret

+ θ̃ number of RR-sets, which is
bounded by O(θ(1) + θ(2) + θiret

). We use τ = 2θiret
+ θ̃ to denote the number of RR-sets. By Assumption

1, generating such number of RR-sets needs time O(
∑τ
j=1(ω(Rj) + 1)). Let Wi =

∑i
j=1(ω(Rj) − EPT)

for i = 1, . . . , τ . Because the procedure to generate Rj is independent to the procedure that generates
R1, . . . , Rj−1, we have E[ω(Rj)|ω(R1), . . . , ω(Rj−1)] = E[ω(Rj)] = EPT. From Lemma 17, we know that
{Wi}i≤τ is a martingale, and τ is a stopping time. Obviously, τ has an upper bound, which can be
derived by setting xret = 1 and LB = 1. Then by the stopping time theorem(Proposition 4), the expected
time complexity for generating RR-sets is O(E[

∑τ
j=1(ω(Rj) + 1)]) = O(E[Wτ] + E[τ · (EPT + 1)]) =

O(E[θ(1) + θ(2) + θiret] · (EPT + 1)) = O(E[τ] · (EPT + 1)). Based on Assumeption 1 and 2 and Lemma 16
and 18, we know that

O(E[τ] · (EPT + 1)) =O

n · ln
(
n`N (P, ε

L1+L2
LB)

)
ε2OPTg+s

·
(m
n
· Eṽ[σ(ṽ)] + 1

)
=O

 (m+ n) · ln
(
n`N (P, ε

2n2
√
dLq+λ2Lc

)
)

ε2

 .

Then we count the time to generate the gradients and the proximal steps. In round i, Algorithm 2
will use the RR-sets Ri with |Ri| = θi. In ProxGrad-RIS, in the i-th round, the algorithm iterates for

37

O(ν
(1)(Ri)nβh+ν(2)(Ri)nL2

h

ε) times. Then, the total time to generate the gradient and to complete the proximal
steps in round i are bounded by

O

(
ν(1)(Ri)nβh + ν(2)(Ri)nL2

h

ε

(∑
R∈Ri

|R|(1 + Th) + Tc

))

=O
(
ν(1)(Ri)nβh + ν(2)(Ri)nL2

h

ε

(
θiν

(1)(Ri)(1 + Th) + Tc

))
≤O

(
ν(2)(Ri)nβh + ν(3)(Ri)nL2

h

ε
θi(1 + Th) + ν(1)(Ri)nβh + ν(2)(Ri)nL2

h

ε
Tc

)
,

where the last line comes from the fact that ν(1)(Ri)2 ≤ ν(2)(Ri) and ν(1)(Ri)ν(2)(Ri) ≤ ν(3)(Ri). ν(1)(Ri)2 ≤
ν(2)(Ri) comes directly from the Cauchy-Schwatz inequality, and ν(1)(Ri)ν(2)(Ri) ≤ ν(3)(Ri) comes from
the fact that for any a, b ≥ 0, we have a3 + b3 ≥ ab2 + a2b. Then we sum up all of them from i = 1 to i = iret
and bound the expectation. We want to bound

O

(
E

[
iret∑
i=1

ν(2)(Ri)nβh + ν(3)(Ri)nL2
h

ε
θi(1 + Th) + ν(1)(Ri)nβh + ν(2)(Ri)nL2

h

ε
Tc

])
.

First note that the second part is easy to compute, and it is just bounded by

O

(
ν(1)nβh + ν(2)nL2

h

ε
log2(n+ λk)Tc

)
,

since we know that iret ≤ log2(n+ λk). Then we bound the first term. For convenience, we use the following
notations

Yi = ν(2)(Ri)nβh + ν(3)(Ri)nL2
h

ε
θi(1 + Th), Zi = ν(2)nβh + ν(3)nL2

h

ε
θi(1 + Th).

It is easy to show that EYi = Zi, and let Wj =
∑j
i=1(Yi − Zi). We will show that Wj is a martingale.

This is due to the fact that since we generate new RR-sets in each round, and each RR-set is independent to
others, then Yi − Zi is independent to all of the information before round i, then Wj is a martingale. Also
notice that iret is a stopping time, since we only decide if the sampling procedure will stop based on the
previous information. By the Martingale Stopping Time theorem(Proposition 4), we have

E
iret∑
i=1

(Yi − Zi) = E[Y1 − Z1]E[iret] = 0.

Then we only have to bound O(E
∑iret

i=1 Zi). We have the following
iret∑
i=1

Zi =
iret∑
i=1

ν(2)nβh + ν(3)nL2
h

ε
θi(1 + Th) ≤ 2ν

(2)nβh + ν(3)nL2
h

ε
θiret

(1 + Th).

Similarly, the total time to generate the gradient and to complete the proximal steps which are not
counted in the sampling procedure(Algorithm 2) are bounded by

O

(
ν(2)(R)nβh + ν(3)(R)nL2

h

ε
θ̃(1 + Th) + ν(1)(R)nβh + ν(2)(R)nL2

h

ε
Tc

)
.

Taking the expectation, because we generate the RR-sets independently and thus ν(2)(R), ν(3)(R) are
independent to θ̃, we have the following bound for the expected time

O

(
ν(2)nβh + ν(3)nL2

h

ε
E[θ̃](1 + Th) + ν(1)nβh + ν(2)nL2

h

ε
Tc

)
.

38

Then from Lemma 16, we have

ν(2)nβh + ν(3)nL2
h

ε
E[2θiret + θ̃](1 + Th) ≤

n2(ν(2)βh + ν(3)L2
h) ln

(
n`N (P, ε

2n2
√
dLq+λ2Lc

)
)

ε3OPTg+s
(1 + Th).

Also, it is easy to show that the expected time for proximal steps is bounded by

ν(1)nβh + ν(2)nL2
h

ε
log2(n+ λk)Tprox,

since the algorithm applies the proximal steps in each iteration, which is the same as calling the gradient of
function c(x).

Combining all of them together(generating gradient, proximal steps, generating RR-sets), we know that
the expected time complexity is

O

n2(ν(2)βh + ν(3)L2
h) ln

(
n`N (P, ε

2n2
√
dLq+λ2Lc

)
)

ε3OPTg+s
(1 + Th)

+ν(1)nβh + ν(2)nL2
h

ε
log2(n+ λk)(Tc + Tprox) +

(m+ n) · ln
(
n`N (P, ε

2n2
√
dLq+λ2Lc

)
)

ε2

 .

We remark that, when comparing Theorem 8 with Theorem 6, if we do the following relaxations for the
corresponding terms in the bound of Theorem 8: ν(2) ≤ ν(1) · n, ν(3) ≤ ν(1) · n2, ν(1) ≤ n, and ν(2) ≤ n2,
together with ν(1)/OPTg+s ≤ m/n (Lemma 18), then we will have the bound given in Theorem 6. This
indicates how loose is the bounds we give in Theorem 5 in the main text. In our experiments (Section ??),
we will demonstrate how much this relaxation is numerically in our dataset.

The following theorem summarizes our result for the UpperGrad-RIS algorithm, revised with the resampling
of RR sets in each iteration step as described before.

Theorem 9. Under Assumption 1 and Assumption 2. Suppose that the projection step can be finished in
time Tproj,. Besides, suppose that c(x) is Lc-Lipschitz and βc-smooth, qv,j(xj) are Lq-Lipschitz for all v, j,
and the gradient and function value of qv,l(xj) and c(x) can be generated in time Tq and Tc(Lc, Lq, βc, Tq, Tc
are all constants). We also assume that the balance variable λ is also a constant and n + λk ≤ nl. Then
the expected running time of UpperGrad-RIS (revised by resampling of RR sets in each sampling iteration) is
bounded by

O

n(n2dν(3)L2
q + 2λn

√
dν(2)LqLc + λ2L2

c) ln
(
n`N (P, ε

2n2
√
dLq+λ2Lc

)
)

ε4OPTg+s
(1 + Th)

+
(n2dν(3)L2

q + 2λn
√
dν(2)LqLc + λ2L2

c)
ε2 log2(n+ λk)(Tc + Tproj)

+
(m+ n) · ln

(
n`N (P, ε

2n2
√
dLq+λ2Lc

)
)

ε2

 .

Proof of Theorem 9. The proof of this theorem is almost the same as the previous one. We only have
to change the iteration step from O

(
ν(1)(R)nβh+ν(2)(R)nL2

h

ε

)
to O

(
(ν(1)(R)n

√
dLq+λLc)2

ε2

)
and the Lipschitz

constant for ĝR and g from n2Lh to n2
√
dLq.

39

D Properties of the Original Function g(x)
In this section, we discuss the properties of the original function g(x). We will compute the gradient of g(x)
and show how to compute the stochastic gradient of g(x). Then we give upper bounds for the smoothness
constant of the function g(x) and the variance of the stochastic gradient estimator ∇̂g(x) in terms of its
L2-norm difference with the true gradient, defined as Var = E[||∇̂g(x)−∇g(x)||22]. These bounds would lead
to our settings of the step size and number of iterations for the stochastic gradient method on the original
objective function g(x).

The following lemma provides the exact gradient formula for g(x).
Lemma 19. The gradient of function g(x) can be written as:

∇g(x) =
∑
u′∈V

 ∑
S:u′ /∈S

(σ(S ∪ {u′})− σ(S))
(∏
u∈S

hu(x)
) ∏

v/∈S∪{u′}

(1− hv(x))

 · ∇hu′(x)

 .
Proof. We first recall the expression of the function g(x),

g(x) = ES [σ(S)] =
∑
S⊆V

(
σ(S)

(∏
u∈S

hu(x)
)(∏

v/∈S

(1− hv(x))
))

.

The gradient of g(x) is given as follow

∇g(x) =∇x

∑
S⊆V

(
σ(S)

(∏
u∈S

hu(x)
)(∏

v/∈S

(1− hv(x))
))

=
∑
S⊆V

σ(S)∇x

((∏
u∈S

hu(x)
)(∏

v/∈S

(1− hv(x))
))

=
∑
S⊆V

σ(S)

∑
u′∈S
∇xhu′(x)

 ∏
u∈S,u 6=u′

hu(x)

(∏
v/∈S

(1− hv(x))
)

−
∑
v′ /∈S

∇xhv′(x)
(∏
u∈S

hu(x)
) ∏

v/∈S,v 6=v′
(1− hv(x))

 .

We then rearrange the gradient term, we have

∇g(x) =
∑
u′∈V

 ∑
S:u′∈S

σ(S)

 ∏
u∈S,u 6=u′

hu(x)

(∏
v/∈S

(1− hv(x))
)
· ∇hu′(x)

−
∑

T :u′ /∈T

σ(T)
(∏
u∈T

hu(x)
) ∏

v/∈T,v 6=u′
(1− hv(x))

 · ∇hu′(x)


=
∑
u′∈V

fu′(x)∇hu′(x),

where fu′(x) is defined as

fu′(x) :=
∑

S:u′ /∈S

(σ(S ∪ {u′})− σ(S))
(∏
u∈S

hu(x)
) ∏

v/∈S∪{u′}

(1− hv(x))

 . (8)

40

Lemma 19 provides the exact gradient formula for g(x), but it involves an exponentially large number of
summation terms and cannot be efficiently computed. Instead, we use Lemma 19 to define a simple stochastic
gradient estimator ∇̂g(x) as the unbiased estimator of ∇g(x).
Definition 5 (Stochastic Gradient Estimator). For any vector x ∈ D, we construct a stochastic gradient
estimator ∇̂g(x) as follows: First, we same a node u′ ∈ V uniformly at random from V . Then, we sample a
subset S ⊆ V \ {u′} according to hu(x) for u ∈ V \ {u′}, more specifically, for each u ∈ V \ {u′}, we include
u in S with probability hu(x) and exclude u from S with probability 1− hu(x), and different u’s are sampled
independently. Next we sample a live-edge graph L based on the triggering model, and compute the marginal
gain of u′ on S in graph L, denoted σL(u′|S), which is the number of nodes in L that can be reached from u′

but not from S. Finally, we set ∇̂g(x) = n · σL(u′|S)∇hu′(x).

It is straightforward to see that ∇̂g(x) is an unbiased estimator of ∇g(x), i.e. E[∇̂g(x)] = ∇g(x).
The next lemma provides the bounds on the smoothness of g(x) and the variance of its stochastic gradient

estimator defined above.
Lemma 20. Assuming that the function hv(x) is Lh-Lipschitz and βh-smooth, then we have the following
bound for the smoothness constant βg of g(x) and the variance of stochastic gradient estimator Var =
E[||∇̂g(x)−∇g(x)||22].

βg ≤βhn2 + 2L2
hn

3, (9)
Var ≤4L2

hn
4. (10)

Proof. In this proof, we use the same fu′(x) definition as given in Eq. (8). we have

||∇g(x)−∇g(y)||2 =||
∑
u′∈V

fu′(x)∇hu′(x)−
∑
u′∈V

fu′(y)∇hu′(y)||2

=||
∑
u′∈V

fu′(x)∇hu′(x)−
∑
u′∈V

fu′(x)∇hu′(y)

+
∑
u′∈V

fu′(x)∇hu′(y)−
∑
u′∈V

fu′(y)∇hu′(y)||2

≤||
∑
u′∈V

fu′(x)∇hu′(x)−
∑
u′∈V

fu′(x)∇hu′(y)||2

+ ||
∑
u′∈V

fu′(x)∇hu′(y)−
∑
u′∈V

fu′(y)∇hu′(y)||2

≤
∑
u′∈V

|fu′(x)| · ||∇hu′(x)−∇hu′(y)||2

+
∑
u′∈V

|fu′(x)− fu′(y)| · ||∇hu′(y)||2

≤
∑
u′∈V

|fu′(x)| · βh||x− y||2 +
∑
u′∈V

|fu′(x)− fu′(y)| · Lh,

where the last inequality comes from the assumptions we made before.
Then, it is easy to see that

fu′(x) ≤
∑

S:u′ /∈S

n ·

(∏
u∈S

hu(x)
) ∏

v/∈S∪{u′}

(1− hv(x))

 = n.

Then we bound |fu′(x)− fu′(y)|. First, we define

ru′(x) =
∑

S:u′ /∈S

(σ(S ∪ {u′})− σ(S))
(∏
u∈S

xu

) ∏
v/∈S∪{u′}

(1− xv)

 .

41

where the input for ru′(·) is defined as x = (xv)v∈V ∈ Rn. Then we show that

|ru′(x)− ru′(y)| ≤ 4n
∑
v∈V
|xv − yv|.

We first show that
|ru′(x−w, xw)− ru′(x−w, x′w)| ≤ 4n|xw − x′w|.

First, if w = u′, then it is obvious that ru′(x−w, xw)− ru′(x−w, x′w) = 0, since the variable corresponding to w
does not appear in the formula. Then assume that u′ 6= w, we can get the following equation by rearranging
the terms.

ru′(x−w, xw)

=xw
∑

S:u′ /∈S,w∈S

(σ (S ∪ {u′})− σ(S))
∏

u∈S,u 6=w
xu

∏
v/∈S,v 6=u′

(1− xv)

+ (1− xw)
∑

S:u′,w/∈S

(σ(S ∪ {u′})− σ(S))
∏
u∈S

xu
∏

v/∈S,v 6=u′,w

(1− xv)

Then we have the following inequalities

|r′u(x−w, xw)− r′u(x−w, x′w)|

=

∣∣∣∣∣(xw − x′w)
∑

S:u′ /∈S,w∈S

(σ (S ∪ {u′})− σ(S))
∏

u∈S,u 6=w
xu

∏
v/∈S,v 6=u′

(1− xv)

+ (x′w − xw)
∑

S:u′,w/∈S

(σ(S ∪ {u′})− σ(S))
∏
u∈S

xu
∏

v/∈S,v 6=u′,w

(1− xv)

∣∣∣∣∣
≤2n|xw − x′w|

The last inequality is due to the two sum terms are the expectations of marginal influence. The marginal
influence is smaller than n due to submodularity.

Then given two vectors x,y ∈ Rn, we define z0 = x, and zi = (y1, . . . , yi, xi+1, . . . , xn) for i = 1, 2, . . . , n−1
and zn = y. Then we have

|ru′(x)− ru′(y)| =|
n−1∑
i=0

(ru′(zi)− ru′(zi+1)|

≤
n−1∑
i=0
|(ru′(zi)− ru′(zi+1)|

≤
n−1∑
i=0

2n|xi+1 − yi+1|

=2n
∑
v∈V
|xv − yv|.

Then, let h(x) := (hu(x))u∈V to be the vector for the activation probabilities, then we have fu′(x) =
ru′(h(x)), and we have

|fu′(x)− fu′(y)| =|ru′(h(x))− ru′(h(y))|

42

≤2n
∑
v∈V
|hv(x)− hv(y)|

≤2n
∑
v∈V

Lh||x− y||2

=2Lhn2 · ||x− y||2,

where the last inequality comes from the assumption that hv(x) is Lh-Lipschitz. Plug in all the terms, we
have shown that

||∇g(x)−∇g(y)||2 ≤
∑
u′∈V

|fu′(x)| · βh||x− y||2 +
∑
u′∈V

|fu′(x)− fu′(y)| · Lh

≤
∑
u′∈V

n · βh||x− y||2 +
∑
u′∈V

Lh · wLhn2 · ||x− y||2

=
(
βhn

2 + 2n3L2
h

)
||x− y||2.

As shown above, the original function g is (βhn2 + 2n3L2
h)-smooth.

Next we bound E[||∇̂g(x)−∇g(x)||22]. First, it is easy to show that |fu′(x)| is bounded by n, so we have

||∇̂g(x)||2 ≤
∑
u′

|fu′(x)| · ||∇hu′(x)||2 ≤ n2Lh.

Then similar to the argument above, we also have

||∇g(x)||2 ≤ n2Lh.

Then
E[||∇̂g(x)−∇g(x)||22] ≤ E[(2n2Lh)2] = 4L2

hn
4 = O(n4).

The following corollary summarizes our stochastic gradient algorithm for the original objective function,
which will be used in the experiment section. It is a direct consequence of Theorem 2 and Lemma 20, and
the proof is omitted.

Corollary 1. Assuming that the function hv(x) is Lh-Lipschitz and βh-smooth. By choosing the unbiased
stochastic gradient estimator shown in Definition 5, we run stochastic gradient algorithm which comes from [9].
The algorithm runs T rounds with gradient step size µt = 1

βhn2+2L2
h
n3+ 2

√
2Lhn2
∆

√
t
, where ∆ = supx,y∈P ||x−y||2.

Then
E
[

max
t=0,1,2,...,T

g(xt)
]
≥ OPT

2 −
(

∆2(βhn2 + 2L2
hn

3)
4T +

√
2∆Lhn2
√
T

)
.

The above theorem shows that with the number of iterations T = O
(
d2(βhn

2+L2
hn

3)
ε + dLhn

2

ε2

)
, we obtain

a solution whose objective value is at least
(OPT

2 − ε
)
.

43

	1 Introduction
	2 Preliminary and Model
	3 Gradient Method with Reverse Influence Sampling
	3.1 Properties of the Reverse Reachable Sets
	3.2 Algorithmic Framework Integrating Gradient Method with RIS
	3.3 Gradient Algorithms

	4 Experiments
	5 Conclusion and Further Work
	A Proof of Theorem 1
	B Omitted Proofs in Subsection 3.3
	B.1 Proof of Theorem 2
	B.2 Proofs of Lemma 3
	B.3 Proof of Lemma 4
	B.4 Proof of Lemma 5
	B.5 Proof of Lemma 6

	C Omitted Proofs for Time Complexity (Theorem 5)
	C.1 Proof of Theorem 5
	C.2 Time Complexity Bound Based on the Moments of RR Set Size

	D Properties of the Original Function g(bold0mu mumu xxverbosexxxx)

